Identifying Potential Lyme Disease Cases Using Self-Reported Worldwide Tweets: Deep Learning Modeling Approach Enhanced With Sentimental Words Through Emojis
Identifying Potential Lyme Disease Cases Using Self-Reported Worldwide Tweets: Deep Learning Modeling Approach Enhanced With Sentimental Words Through Emojis
Elda Kokoe Elolo Laison
1
, MSc, MD ;
Mohamed Hamza Ibrahim
2
, PhD ;
Srikanth Boligarla
3
, ALM ;
Jiaxin Li
3
, ALM ;
Raja Mahadevan
3
, ALM ;
Austen Ng
3
, ALM ;
Venkataraman Muthuramalingam
3
, ALM ;
Wee Yi Lee
3
, ALM ;
Yijun Yin
3
, ALM ;
Bouchra R Nasri
1
, PhD
1
Département de médecine sociale et préventive, École de Santé Publique de l’Université de Montréal, Université de Montréal, Montréal, QC, Canada
2
Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt
3
Harvard Extension School, Harvard University, Cambridge, MA, United States
Corresponding Author:
-
Bouchra R Nasri, PhD
-
Département de médecine sociale et préventive
-
École de Santé Publique de l’Université de Montréal
-
Université de Montréal
-
7101 Park Ave
-
Montréal, QC, H3N 1X9
-
Canada
-
Phone:
1 514 343-7973
-
Email: bouchra.nasri@umontreal.ca