Journal of Medical Internet Research
The leading peer-reviewed journal for digital medicine and health and health care in the internet age.
Editor-in-Chief:
Gunther Eysenbach, MD, MPH, FACMI, Founding Editor and Publisher; Adjunct Professor, School of Health Information Science, University of Victoria, Canada
Impact Factor 5.8 CiteScore 14.4
Recent Articles
Adaptive systems serve to personalize interventions or training based on the user’s needs and performance. The adaptation techniques rely on an underlying engine responsible for processing incoming data and generating tailored responses. Adaptive virtual reality (VR) systems have proven to be efficient in data monitoring and manipulation, as well as in their ability to transfer learning outcomes to the real world. In recent years, there has been significant interest in applying these systems to improve deficits associated with autism spectrum disorder (ASD). This is driven by the heterogeneity of symptoms among the population affected, highlighting the need for early customized interventions that target each individual’s specific symptom configuration.
Depressive disorders have substantial global implications, leading to various social consequences, including decreased occupational productivity and a high disability burden. Early detection and intervention for clinically significant depression have gained attention; however, the existing depression screening tools, such as the Center for Epidemiologic Studies Depression Scale, have limitations in objectivity and accuracy. Therefore, researchers are identifying objective indicators of depression, including image analysis, blood biomarkers, and ecological momentary assessments (EMAs). Among EMAs, user-generated text data, particularly from diary writing, have emerged as a clinically significant and analyzable source for detecting or diagnosing depression, leveraging advancements in large language models such as ChatGPT.
Although COVID-19 is no longer a global health emergency, it remains pervasive in Singapore, a city-state situated in Southeast Asia, with periodic waves of infection. In addition to disease management, strong communication strategies are critical in the government’s response to the pandemic to keep the public updated and equip them in protecting themselves.
Cardiac arrest (CA) is one of the leading causes of death among patients in the intensive care unit (ICU). Although many CA prediction models with high sensitivity have been developed to anticipate CA, their practical application has been challenging due to a lack of generalization and validation. Additionally, the heterogeneity among patients in different ICU subtypes has not been adequately addressed.
The purpose of syndromic surveillance is to provide early warning of public health incidents, real-time situational awareness during incidents and emergencies, and reassurance of the lack of impact on the population, particularly during mass gatherings. The United Kingdom Health Security Agency (UKHSA) currently coordinates a real-time syndromic surveillance service that encompasses 6 national syndromic surveillance systems reporting on daily health care usage across England. Each working day, UKHSA analyzes syndromic data from over 200,000 daily patient encounters with the National Health Service, monitoring over 140 unique syndromic indicators, risk assessing over 50 daily statistical exceedances, and taking and recommending public health action on these daily. This English syndromic surveillance service had its origins as a small exploratory pilot in a single region of England in 1999 involving a new pilot telehealth service, initially reporting only on “cold or flu” calls. This pilot showed the value of syndromic surveillance in England, providing advanced warning of the start of seasonal influenza activity over existing laboratory-based surveillance systems. Since this initial pilot, a program of real-time syndromic surveillance has evolved from the single-system, -region, -indicator pilot (using manual data transfer methods) to an all-hazard, multisystem, automated national service. The suite of systems now monitors a wide range of syndromes, from acute respiratory illness to diarrhea to cardiac conditions, and is widely used in routine public health surveillance and for monitoring seasonal respiratory disease and incidents such as the COVID-19 pandemic. Here, we describe the 25-year evolution of the English syndromic surveillance system, focusing on the expansion and improvements in data sources and data management, the technological and digital enablers, and novel methods of data analytics and visualization.
Specialized studies have shown that smartphone-based social interaction data are predictors of depressive and anxiety symptoms. Moreover, at times during the COVID-19 pandemic, social interaction took place primarily remotely. To appropriately test these objective data for their added value for epidemiological research during the pandemic, it is necessary to include established predictors.
Hand function assessment heavily relies on specific task scenarios, making it challenging to ensure validity and reliability. In addition, the wide range of assessment tools, limited and expensive data recording, and analysis systems further aggravate the issue. However, smartphones provide a promising opportunity to address these challenges. Thus, the built-in, high-efficiency sensors in smartphones can be used as effective tools for hand function assessment.
Preprints Open for Peer-Review
Open Peer Review Period:
-
Open Peer Review Period:
-
Open Peer Review Period:
-
Open Peer Review Period:
-
Open Peer Review Period:
-