This paper is in the following e-collection/theme issue:
Artificial Intelligence (1371) Machine Learning (1465) Clinical Informatics (1022) Imaging Informatics (193) Decision Support for Health Professionals (1185) Clinical Information and Decision Making (1407) Innovations and Technology in Cancer Care (423)Published on in Vol 23, No 7 (2021): July
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/26151, first published
.
Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study
Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study
Authors of this article:
Stanislav Nikolov1 ; Sam Blackwell1 ; Alexei Zverovitch2 ; Ruheena Mendes3 ; Michelle Livne2 ; Jeffrey De Fauw1 ; Yojan Patel2 ; Clemens Meyer1 ; Harry Askham1 ; Bernadino Romera-Paredes1 ; Christopher Kelly2 ; Alan Karthikesalingam2 ; Carlton Chu1 ; Dawn Carnell3 ; Cheng Boon4 ; Derek D'Souza3 ; Syed Ali Moinuddin3 ; Bethany Garie1 ; Yasmin McQuinlan1 ; Sarah Ireland1 ; Kiarna Hampton1 ; Krystle Fuller1 ; Hugh Montgomery5 ; Geraint Rees5 ; Mustafa Suleyman6 ; Trevor Back1 ; Cían Owen Hughes2 ; Joseph R Ledsam7 ; Olaf Ronneberger1
There are currently no tweets available for this article within the specified range.