Published on in Vol 23, No 1 (2021): January

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/25314, first published .
Toward Using Twitter for Tracking COVID-19: A Natural Language Processing Pipeline and Exploratory Data Set

Toward Using Twitter for Tracking COVID-19: A Natural Language Processing Pipeline and Exploratory Data Set

Toward Using Twitter for Tracking COVID-19: A Natural Language Processing Pipeline and Exploratory Data Set

Journals

  1. Su Z, McDonnell D, Bentley B, He J, Shi F, Cheshmehzangi A, Ahmad J, Jia P. Addressing Biodisaster X Threats With Artificial Intelligence and 6G Technologies: Literature Review and Critical Insights. Journal of Medical Internet Research 2021;23(5):e26109 View
  2. Rabiolo A, Alladio E, Morales E, McNaught A, Bandello F, Afifi A, Marchese A. Forecasting the COVID-19 Epidemic By Integrating Symptom Search Behavior Into Predictive Models: Infoveillance Study. Journal of Medical Internet Research 2021;23(8):e28876 View
  3. Baer M, Purves R. Identifying Landscape Relevant Natural Language using Actively Crowdsourced Landscape Descriptions and Sentence-Transformers. KI - Künstliche Intelligenz 2023;37(1):55 View
  4. Golder S, Klein A, Magge A, O’Connor K, Cai H, Weissenbacher D, Gonzalez-Hernandez G. A chronological and geographical analysis of personal reports of COVID-19 on Twitter from the UK. DIGITAL HEALTH 2022;8:205520762210975 View
  5. Saura J, Palacios-Marqués D, Ribeiro-Soriano D. Exploring the boundaries of open innovation: Evidence from social media mining. Technovation 2023;119:102447 View
  6. Bhattacharya M, Bhat S, Tripathy S, Bansal A, Choudhary M. Improving biomedical named entity recognition through transfer learning and asymmetric tri-training. Procedia Computer Science 2023;218:2723 View
  7. Hu M, Conway M. Perspectives of the COVID-19 Pandemic on Reddit: Comparative Natural Language Processing Study of the United States, the United Kingdom, Canada, and Australia. JMIR Infodemiology 2022;2(2):e36941 View
  8. Cao G, Shen L, Evans R, Zhang Z, Bi Q, Huang W, Yao R, Zhang W. Analysis of social media data for public emotion on the Wuhan lockdown event during the COVID-19 pandemic. Computer Methods and Programs in Biomedicine 2021;212:106468 View
  9. Yuan K, Huang G, Wang L, Wang T, Liu W, Jiang H, Yang A. Predicting Norovirus in the United States Using Google Trends: Infodemiology Study. Journal of Medical Internet Research 2021;23(9):e24554 View
  10. Spiekermann S, Krasnova H, Hinz O, Baumann A, Benlian A, Gimpel H, Heimbach I, Köster A, Maedche A, Niehaves B, Risius M, Trenz M. Values and Ethics in Information Systems. Business & Information Systems Engineering 2022;64(2):247 View
  11. Arias F, Zambrano Nunez M, Guerra-Adames A, Tejedor-Flores N, Vargas-Lombardo M. Sentiment Analysis of Public Social Media as a Tool for Health-Related Topics. IEEE Access 2022;10:74850 View
  12. Liu Y, Yin Z, Wan Z, Yan C, Xia W, Ni C, Clayton E, Vorobeychik Y, Kantarcioglu M, Malin B. Implicit Incentives Among Reddit Users to Prioritize Attention Over Privacy and Reveal Their Faces When Discussing Direct-to-Consumer Genetic Test Results: Topic and Attention Analysis. JMIR Infodemiology 2022;2(2):e35702 View
  13. Caskey J, McConnell I, Oguss M, Dligach D, Kulikoff R, Grogan B, Gibson C, Wimmer E, DeSalvo T, Nyakoe-Nyasani E, Churpek M, Afshar M. Identifying COVID-19 Outbreaks From Contact-Tracing Interview Forms for Public Health Departments: Development of a Natural Language Processing Pipeline. JMIR Public Health and Surveillance 2022;8(3):e36119 View
  14. Lin S, Cheng X, Zhang J, Yannam J, Barnes A, Koch J, Hayes R, Gimm G, Zhao X, Purohit H, Xue H. Social Media Data Mining of Antitobacco Campaign Messages: Machine Learning Analysis of Facebook Posts. Journal of Medical Internet Research 2023;25:e42863 View
  15. James P, Jonczyk J, Smith L, Harris N, Komar T, Bell D, Ranjan R. Realizing Smart City Infrastructure at Scale, in the Wild: A Case Study. Frontiers in Sustainable Cities 2022;4 View
  16. Durazzi F, Pichard F, Remondini D, Salathé M. Dynamics of social media behavior before and after SARS-CoV-2 infection. Frontiers in Public Health 2023;10 View
  17. Álvarez-Carmona M, Aranda R, Rodríguez-González A, Pellegrin L, Carlos H. Classifying the Mexican epidemiological semaphore colour from the Covid-19 text Spanish news. Journal of Information Science 2024;50(3):568 View
  18. Ricard B, Hassanpour S. Deep Learning for Identification of Alcohol-Related Content on Social Media (Reddit and Twitter): Exploratory Analysis of Alcohol-Related Outcomes. Journal of Medical Internet Research 2021;23(9):e27314 View
  19. Hua Y, Jiang H, Lin S, Yang J, Plasek J, Bates D, Zhou L. Using Twitter data to understand public perceptions of approved versus off-label use for COVID-19-related medications. Journal of the American Medical Informatics Association 2022;29(10):1668 View
  20. Gatto J, Seegmiller P, Johnston G, Preum S. Identifying the Perceived Severity of Patient-Generated Telemedical Queries Regarding COVID: Developing and Evaluating a Transfer Learning–Based Solution. JMIR Medical Informatics 2022;10(9):e37770 View
  21. Lu G, Businger M, Dollfus C, Wozniak T, Fleck M, Heroth T, Lock I, Lipenkova J. Agenda-Setting for COVID-19: A Study of Large-Scale Economic News Coverage Using Natural Language Processing. International Journal of Data Science and Analytics 2023;15(3):291 View
  22. Wang A, Dara R, Yousefinaghani S, Maier E, Sharif S. A Review of Social Media Data Utilization for the Prediction of Disease Outbreaks and Understanding Public Perception. Big Data and Cognitive Computing 2023;7(2):72 View
  23. Braga D, Oliveira D, Rosário R, Novais P, Machado J. An Architecture Proposal for Noncommunicable Diseases Prevention. Procedia Computer Science 2023;220:820 View
  24. Dolatabadi E, Moyano D, Bales M, Spasojevic S, Bhambhoria R, Bhatti J, Debnath S, Hoell N, Li X, Leng C, Nanda S, Saab J, Sahak E, Sie F, Uppal S, Vadlamudi N, Vladimirova A, Yakimovich A, Yang X, Kocak S, Cheung A. Using Social Media to Help Understand Patient-Reported Health Outcomes of Post–COVID-19 Condition: Natural Language Processing Approach. Journal of Medical Internet Research 2023;25:e45767 View
  25. Carabot F, Fraile-Martínez O, Donat-Vargas C, Santoma J, Garcia-Montero C, Pinto da Costa M, Molina-Ruiz R, Ortega M, Alvarez-Mon M, Alvarez-Mon M. Understanding Public Perceptions and Discussions on Opioids Through Twitter: Cross-Sectional Infodemiology Study. Journal of Medical Internet Research 2023;25:e50013 View
  26. Suzuki N, Takumi Y. A Study of the Trends of Pollen Dispersal and Hay Fever Symptoms Using Twitter. Nippon Jibiinkoka Tokeibugeka Gakkai Kaiho(Tokyo) 2023;126(6):777 View
  27. Kaur M, Cargill T, Hui K, Vu M, Bragazzi N, Kong J. A Novel Approach for the Early Detection of Medical Resource Demand Surges During Health Care Emergencies: Infodemiology Study of Tweets. JMIR Formative Research 2024;8:e46087 View
  28. Wang D, Lentzen M, Botz J, Valderrama D, Deplante L, Perrio J, Génin M, Thommes E, Coudeville L, Fröhlich H. Development of an early alert model for pandemic situations in Germany. Scientific Reports 2023;13(1) View
  29. Lacárcel F, Huete R, Zerva K. Decoding digital nomad destination decisions through user-generated content. Technological Forecasting and Social Change 2024;200:123098 View
  30. Budiman I, Faisal M, Faridhah A, Farmadi A, Mazdadi M, Saragih T, Abadi F. Classification Performance Comparison of BERT and IndoBERT on SelfReport of COVID-19 Status on Social Media. Journal of Computer Sciences Institute 2024;30:61 View
  31. Lamsal R, Read M, Karunasekera S. CrisisTransformers: Pre-trained language models and sentence encoders for crisis-related social media texts. Knowledge-Based Systems 2024;296:111916 View
  32. Tahir B, Mehmood M. Leveraging social computing for epidemic surveillance: A case study. Big Data Research 2024;38:100483 View
  33. dos Santos Júnior V, de Oliveira M, Cruz L, Coelho da Silva T. Learning and semiautomatic intention labeling for classification models: a COVID-19 dialog attendance study for chatbots. Natural Language Processing 2024:1 View
  34. Stallard-Olivera E, Fierer N, Glymour M. Internet-based surveillance to track trends in seasonal allergies across the United States. PNAS Nexus 2024;3(10) View

Books/Policy Documents

  1. Küçük E, Küçük D. Applications of Computational Science in Artificial Intelligence. View
  2. El khatib M, Beshwari F, Beshwari M, Beshwari A, Alzoubi H, Alshurideh M. The Effect of Information Technology on Business and Marketing Intelligence Systems. View