Published on in Vol 22, No 8 (2020): August
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/17478, first published
.
Journals
- Singh T, Roberts K, Cohen T, Cobb N, Wang J, Fujimoto K, Myneni S. Social Media as a Research Tool (SMaaRT) for Risky Behavior Analytics: Methodological Review. JMIR Public Health and Surveillance 2020;6(4):e21660 View
- Hswen Y, Yom-Tov E. Analysis of a Vaping-Associated Lung Injury Outbreak through Participatory Surveillance and Archival Internet Data. International Journal of Environmental Research and Public Health 2021;18(15):8203 View
- Wu D, Kasson E, Singh A, Ren Y, Kaiser N, Huang M, Cavazos-Rehg P. Topics and Sentiment Surrounding Vaping on Twitter and Reddit During the 2019 e-Cigarette and Vaping Use–Associated Lung Injury Outbreak: Comparative Study. Journal of Medical Internet Research 2022;24(12):e39460 View
- Baker W, Colditz J, Dobbs P, Mai H, Visweswaran S, Zhan J, Primack B. Classification of Twitter Vaping Discourse Using BERTweet: Comparative Deep Learning Study. JMIR Medical Informatics 2022;10(7):e33678 View
- Fu R, Kundu A, Mitsakakis N, Elton-Marshall T, Wang W, Hill S, Bondy S, Hamilton H, Selby P, Schwartz R, Chaiton M. Machine learning applications in tobacco research: a scoping review. Tobacco Control 2023;32(1):99 View
- Singh T, Roberts K, Cohen T, Cobb N, Franklin A, Myneni S. Discerning conversational context in online health communities for personalized digital behavior change solutions using Pragmatics to Reveal Intent in Social Media (PRISM) framework. Journal of Biomedical Informatics 2023;140:104324 View
- Sauvayre R, Vernier J, Chauvière C. An Analysis of French-Language Tweets About COVID-19 Vaccines: Supervised Learning Approach. JMIR Medical Informatics 2022;10(5):e37831 View
- Kong G, Schott A, Lee J, Dashtian H, Murthy D. Understanding e-cigarette content and promotion on YouTube through machine learning. Tobacco Control 2023;32(6):739 View
- Ezike N, Ames Boykin A, Dobbs P, Mai H, Primack B. Exploring Factors That Predict Marketing of e-Cigarette Products on Twitter: Infodemiology Approach Using Time Series. JMIR Infodemiology 2022;2(2):e37412 View
- Chu K, Hershey T, Hoffman B, Wolynn R, Colditz J, Sidani J, Primack B. Puff Bars, Tobacco Policy Evasion, and Nicotine Dependence: Content Analysis of Tweets. Journal of Medical Internet Research 2022;24(3):e27894 View
- Malik A, Berggren W, Al-Busaidi A. Instagram as a research tool for examining tobacco-related content: A methodological review. Technology in Society 2022;70:102008 View
- Hudon A, Beaudoin M, Phraxayavong K, Dellazizzo L, Potvin S, Dumais A. Use of Automated Thematic Annotations for Small Data Sets in a Psychotherapeutic Context: Systematic Review of Machine Learning Algorithms. JMIR Mental Health 2021;8(10):e22651 View
- Ren Y, Wu D, Singh A, Kasson E, Huang M, Cavazos-Rehg P. Automated Detection of Vaping-Related Tweets on Twitter During the 2019 EVALI Outbreak Using Machine Learning Classification. Frontiers in Big Data 2022;5 View
- Kasson E, Singh A, Huang M, Wu D, Cavazos-Rehg P. Using a mixed methods approach to identify public perception of vaping risks and overall health outcomes on Twitter during the 2019 EVALI outbreak. International Journal of Medical Informatics 2021;155:104574 View
- Dupuy-Zini A, Audeh B, Gérardin C, Duclos C, Gagneux-Brunon A, Bousquet C. Users’ Reactions to Announced Vaccines Against COVID-19 Before Marketing in France: Analysis of Twitter Posts. Journal of Medical Internet Research 2023;25:e37237 View
- Fisher A, Young M, Payer D, Pacheco K, Dubeau C, Mago V. Automating Detection of Drug-Related Harms on Social Media: Machine Learning Framework. Journal of Medical Internet Research 2023;25:e43630 View
- Liu Y, Wu J, Zhou J, Guo J, Liang C, Xing Y, Wang Z, Chen L, Ding Y, Ren D, Bai Y, Hu D. Identification of high-risk population of pneumoconiosis using deep learning segmentation of lung 3D images and radiomics texture analysis. Computer Methods and Programs in Biomedicine 2024;244:108006 View
- Chaudhary L, Girdhar N, Sharma D, Andreu-Perez J, Doucet A, Renz M. A Review of Deep Learning Models for Twitter Sentiment Analysis: Challenges and Opportunities. IEEE Transactions on Computational Social Systems 2024;11(3):3550 View