Published on in Vol 22, No 8 (2020): August

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/16709, first published .
Reproducible Machine Learning Methods for Lung Cancer Detection Using Computed Tomography Images: Algorithm Development and Validation

Reproducible Machine Learning Methods for Lung Cancer Detection Using Computed Tomography Images: Algorithm Development and Validation

Reproducible Machine Learning Methods for Lung Cancer Detection Using Computed Tomography Images: Algorithm Development and Validation

Journals

  1. Yu K, Hu V, Wang F, Matulonis U, Mutter G, Golden J, Kohane I. Deciphering serous ovarian carcinoma histopathology and platinum response by convolutional neural networks. BMC Medicine 2020;18(1) View
  2. Chaturvedi P, Jhamb A, Vanani M, Nemade V. Prediction and Classification of Lung Cancer Using Machine Learning Techniques. IOP Conference Series: Materials Science and Engineering 2021;1099(1):012059 View
  3. Easwaran U, Kandasamy Y, Chellappan R, Perumal O. Impact of biomaterials in lung tumor classification and segmentation using Machine learning healthcare. Materials Today: Proceedings 2021;43:3100 View
  4. Althubaity D, Alotaibi F, Osman A, Al-khadher M, Abdalla Y, Alwesabi S, Abdulrahman E, Alhemairy M. Automated Lung Cancer Segmentation in Tissue Micro Array Analysis Histopathological Images Using a Prototype of Computer-Assisted Diagnosis. Journal of Personalized Medicine 2023;13(3):388 View
  5. Somfai E, Baffy B, Fenech K, Hosszú R, Korózs D, Pólik M, Sárdy M, Lőrincz A. Handling dataset dependence with model ensembles for skin lesion classification from dermoscopic and clinical images. International Journal of Imaging Systems and Technology 2023;33(2):556 View
  6. Arzamasov K, Semenov S, Kokina D, Bobrovskaya T, Pavlov N, Kirpichev Y, Andreychenko A, Vladzymyrskyy A. Criteria for the Applicability of Computer Vision for Preventive Studies on the Example of Chest X-Ray and Fluorography. Meditsinskaya Fizika 2023;96(4):56 View
  7. Sohn E. The reproducibility issues that haunt health-care AI. Nature 2023;613(7943):402 View
  8. Banu S, Sarker M, Abdel-Nasser M, Puig D, Raswan H. AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation. Applied Sciences 2021;11(21):10132 View
  9. Gandomkar Z, Khong P, Punch A, Lewis S. Using Occlusion-Based Saliency Maps to Explain an Artificial Intelligence Tool in Lung Cancer Screening: Agreement Between Radiologists, Labels, and Visual Prompts. Journal of Digital Imaging 2022;35(5):1164 View
  10. Sonnenschein K, Stojanović S, Dickel N, Fiedler J, Bauersachs J, Thum T, Kunz M, Tongers J. Artificial Intelligence Identifies an Urgent Need for Peripheral Vascular Intervention by Multiplexing Standard Clinical Parameters. Biomedicines 2021;9(10):1456 View
  11. Ye M, Tong L, Zheng X, Wang H, Zhou H, Zhu X, Zhou C, Zhao P, Wang Y, Wang Q, Bai L, Cai Z, Kong F, Wang Y, Li Y, Feng M, Ye X, Yang D, Liu Z, Zhang Q, Wang Z, Han S, Sun L, Zhao N, Yu Z, Zhang J, Zhang X, Katz R, Sun J, Bai C. A Classifier for Improving Early Lung Cancer Diagnosis Incorporating Artificial Intelligence and Liquid Biopsy. Frontiers in Oncology 2022;12 View
  12. Cifci M. A Deep Learning-Based Framework for Uncertainty Quantification in Medical Imaging Using the DropWeak Technique: An Empirical Study with Baresnet. Diagnostics 2023;13(4):800 View
  13. Yan S, Huang Q, Yu S, Liu Z, Ramirez G. Computed Tomography Images under Deep Learning Algorithm in the Diagnosis of Perioperative Rehabilitation Nursing for Patients with Lung Cancer. Scientific Programming 2022;2022:1 View
  14. Anderson P, Gadgil R, Johnson W, Schwab E, Davidson J. Reducing variability of breast cancer subtype predictors by grounding deep learning models in prior knowledge. Computers in Biology and Medicine 2021;138:104850 View
  15. Tsai P, Lee T, Kuo K, Su F, Lee T, Marostica E, Ugai T, Zhao M, Lau M, Väyrynen J, Giannakis M, Takashima Y, Kahaki S, Wu K, Song M, Meyerhardt J, Chan A, Chiang J, Nowak J, Ogino S, Yu K. Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients. Nature Communications 2023;14(1) View
  16. Bhavani K, Gopalakrishna M. COMPARATIVE ANALYSIS OF TRADITIONAL CLASSIFICATION AND DEEP LEARNING IN LUNG CANCER PREDICTION. Biomedical Engineering: Applications, Basis and Communications 2023;35(02) View
  17. Arzamasov K, Vasilev Y, Vladzymyrskyy A, Omelyanskaya O, Shulkin I, Kozikhina D, Goncharova I, Gelezhe P, Kirpichev Y, Bobrovskaya T, Andreychenko A. An International Non-Inferiority Study for the Benchmarking of AI for Routine Radiology Cases: Chest X-ray, Fluorography and Mammography. Healthcare 2023;11(12):1684 View
  18. Moassefi M, Rouzrokh P, Conte G, Vahdati S, Fu T, Tahmasebi A, Younis M, Farahani K, Gentili A, Kline T, Kitamura F, Huo Y, Kuanar S, Younis K, Erickson B, Faghani S. Reproducibility of Deep Learning Algorithms Developed for Medical Imaging Analysis: A Systematic Review. Journal of Digital Imaging 2023;36(5):2306 View
  19. Ardimento P, Aversano L, Bernardi M, Cimitile M, Iammarino M, Verdone C. Evo-GUNet3++: Using evolutionary algorithms to train UNet-based architectures for efficient 3D lung cancer detection. Applied Soft Computing 2023;144:110465 View
  20. Tripathi A, Katiyar S, Mishra A. Glypican1: A potential cancer biomarker for nanotargeted therapy. Drug Discovery Today 2023;28(8):103660 View
  21. Reddy N, Khanaa V. Diagnosing and categorizing of pulmonary diseases using Deep learning conventional Neural network. International Journal of Experimental Research and Review 2023;31(Spl Volume):12 View
  22. Rani K, Sumathy G, Shoba L, Shermila P, Prince M. Radon transform-based improved single seeded region growing segmentation for lung cancer detection using AMPWSVM classification approach. Signal, Image and Video Processing 2023;17(8):4571 View
  23. Yue Y, Kong F, Cheng M, Cao H, Qi J, Shi Z. KFS-Net: Key Features Sampling Network for Lung Nodule Segmentation. Sensing and Imaging 2023;25(1) View
  24. Parveen R, Saleem U, Abid K, Aslam N. Identification of Lungs Cancer by using Watershed Machine Learning Algorithm. VFAST Transactions on Software Engineering 2023;11(2):70 View
  25. Gayap H, Akhloufi M. Deep Machine Learning for Medical Diagnosis, Application to Lung Cancer Detection: A Review. BioMedInformatics 2024;4(1):236 View
  26. Saeki Y, Maki N, Nemoto T, Inada K, Minami K, Tamura R, Imamura G, Cho-Isoda Y, Kitazawa S, Kojima H, Yoshikawa G, Sato Y. Lung cancer detection in perioperative patients' exhaled breath with nanomechanical sensor array. Lung Cancer 2024;190:107514 View
  27. Lasko T, Strobl E, Stead W. Why do probabilistic clinical models fail to transport between sites. npj Digital Medicine 2024;7(1) View
  28. Zhang Y, Xiao L, LYu L, Zhang L. Construction of a predictive model for bone metastasis from first primary lung adenocarcinoma within 3 cm based on machine learning algorithm: a retrospective study. PeerJ 2024;12:e17098 View
  29. Tai D, Nhu N, Tuan P, Sulieman A, Omer H, Alirezaei Z, Bradley D, Chow J. A user-friendly deep learning application for accurate lung cancer diagnosis. Journal of X-Ray Science and Technology 2024;32(3):611 View
  30. Drazen J, Yu K, Healey E, Leong T, Kohane I, Manrai A. Medical Artificial Intelligence and Human Values. New England Journal of Medicine 2024;390(20):1895 View
  31. Marinakis I, Karampidis K, Papadourakis G. Pulmonary Nodule Detection, Segmentation and Classification Using Deep Learning: A Comprehensive Literature Review. BioMedInformatics 2024;4(3):2043 View

Books/Policy Documents

  1. Barrachina M, Valenzuela L. Artificial Intelligence for Societal Development and Global Well-Being. View
  2. Kashyap S, Shukla A, Naim I. AI and IoT-Based Technologies for Precision Medicine. View
  3. Sudhir Reddy N, Khanaa V. Intelligent Systems and Sustainable Computing. View
  4. Sundarrajan M, Perumal S, Sasikala S, Ramachandran M, Pradeep N. Advances in Explainable AI Applications for Smart Cities. View
  5. Sohaib M. Universal Access in Human-Computer Interaction. View