Published on in Vol 22, No 7 (2020): July

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/18697, first published .
Diagnosing Parkinson Disease Through Facial Expression Recognition: Video Analysis

Diagnosing Parkinson Disease Through Facial Expression Recognition: Video Analysis

Diagnosing Parkinson Disease Through Facial Expression Recognition: Video Analysis

Authors of this article:

Bo Jin1 Author Orcid Image ;   Yue Qu1 Author Orcid Image ;   Liang Zhang2 Author Orcid Image ;   Zhan Gao3 Author Orcid Image

Journals

  1. Sibley K, Girges C, Hoque E, Foltynie T, Mirelman A, Dorsey E, Brundin P, Bloem B. Video-Based Analyses of Parkinson’s Disease Severity: A Brief Review. Journal of Parkinson's Disease 2021;11(s1):S83 View
  2. Manco L, Maffei N, Strolin S, Vichi S, Bottazzi L, Strigari L. Basic of machine learning and deep learning in imaging for medical physicists. Physica Medica 2021;83:194 View
  3. Küntzler T, Höfling T, Alpers G. Automatic Facial Expression Recognition in Standardized and Non-standardized Emotional Expressions. Frontiers in Psychology 2021;12 View
  4. Ko H, Kim K, Bae M, Seo M, Nam G, Park S, Park S, Ihm J, Lee J. Changes in Computer-Analyzed Facial Expressions with Age. Sensors 2021;21(14):4858 View
  5. Neethirajan S. Happy Cow or Thinking Pig? WUR Wolf—Facial Coding Platform for Measuring Emotions in Farm Animals. AI 2021;2(3):342 View
  6. Giannakopoulou K, Roussaki I, Demestichas K. Internet of Things Technologies and Machine Learning Methods for Parkinson’s Disease Diagnosis, Monitoring and Management: A Systematic Review. Sensors 2022;22(5):1799 View
  7. Calvo-Ariza N, Gómez-Gómez L, Orozco-Arroyave J. Classical FE Analysis to Classify Parkinson’s Disease Patients. Electronics 2022;11(21):3533 View
  8. Sibley K, Girges C, Candelario J, Milabo C, Salazar M, Esperida J, Dushin Y, Limousin P, Foltynie T. An Evaluation of KELVIN, an Artificial Intelligence Platform, as an Objective Assessment of the MDS UPDRS Part III. Journal of Parkinson's Disease 2022;12(7):2223 View
  9. Xu Z, Shen B, Tang Y, Wu J, Wang J. Deep Clinical Phenotyping of Parkinson’s Disease: Towards a New Era of Research and Clinical Care. Phenomics 2022;2(5):349 View
  10. Lasri I, Riadsolh A, Elbelkacemi M. Facial emotion recognition of deaf and hard-of-hearing students for engagement detection using deep learning. Education and Information Technologies 2023;28(4):4069 View
  11. Hou X, Zhang Y, Wang Y, Wang X, Zhao J, Zhu X, Su J. A Markerless 2D Video, Facial Feature Recognition–Based, Artificial Intelligence Model to Assist With Screening for Parkinson Disease: Development and Usability Study. Journal of Medical Internet Research 2021;23(11):e29554 View
  12. Chen M, Sun Z, Su F, Chen Y, Bu D, Lyu Y. An Auxiliary Diagnostic System for Parkinson’s Disease Based on Wearable Sensors and Genetic Algorithm Optimized Random Forest. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2022;30:2254 View
  13. Dixit S, Bohre K, Singh Y, Himeur Y, Mansoor W, Atalla S, Srinivasan K. A Comprehensive Review on AI-Enabled Models for Parkinson’s Disease Diagnosis. Electronics 2023;12(4):783 View
  14. Su G, Lin B, Luo W, Yin J, Deng S, Gao H, Xu R. Hypomimia Recognition in Parkinson’s Disease With Semantic Features. ACM Transactions on Multimedia Computing, Communications, and Applications 2021;17(3s):1 View
  15. Alajmi M, A. Elshakankiry O, El-Shafai W, S. El-Sayed H, I. Sallam A, M. El-Hoseny H, Sedik A, S. Faragallah O. Smart and Automated Diagnosis of COVID-19 Using Artificial Intelligence Techniques. Intelligent Automation & Soft Computing 2022;32(3):1403 View
  16. Hoang T, Zehni M, Xu H, Heintz G, Zallek C, Do M. Towards a Comprehensive Solution for a Vision-Based Digitized Neurological Examination. IEEE Journal of Biomedical and Health Informatics 2022;26(8):4020 View
  17. Zhang X, Wang Y, Zhang L, Jin B, Zhang H. Exploring unsupervised multivariate time series representation learning for chronic disease diagnosis. International Journal of Data Science and Analytics 2023;15(2):173 View
  18. Fröhlich H, Bontridder N, Petrovska-Delacréta D, Glaab E, Kluge F, Yacoubi M, Marín Valero M, Corvol J, Eskofier B, Van Gyseghem J, Lehericy S, Winkler J, Klucken J. Leveraging the Potential of Digital Technology for Better Individualized Treatment of Parkinson's Disease. Frontiers in Neurology 2022;13 View
  19. Maremmani C, Rovini E, Salvadori S, Pecori A, Pasquini J, Ciammola A, Rossi S, Berchina G, Monastero R, Cavallo F. Hands–feet wireless devices: Test–retest reliability and discriminant validity of motor measures in Parkinson's disease telemonitoring. Acta Neurologica Scandinavica 2022;146(3):304 View
  20. He S, Su H, Li Y, Xu W, Wang X, Han D. Detecting obstructive sleep apnea by craniofacial image–based deep learning. Sleep and Breathing 2022;26(4):1885 View
  21. Zhang A, Lou J, Pan Z, Luo J, Zhang X, Zhang H, Li J, Wang L, Cui X, Ji B, Chen L. Prediction of anemia using facial images and deep learning technology in the emergency department. Frontiers in Public Health 2022;10 View
  22. Gat L, Gerston A, Shikun L, Inzelberg L, Hanein Y, Komiyama T. Similarities and disparities between visual analysis and high-resolution electromyography of facial expressions. PLOS ONE 2022;17(2):e0262286 View
  23. Gomez L, Morales A, Fierrez J, Orozco-Arroyave J, Damaševičius R. Exploring facial expressions and action unit domains for Parkinson detection. PLOS ONE 2023;18(2):e0281248 View
  24. Qiang J, Wu D, Du H, Zhu H, Chen S, Pan H. Review on Facial-Recognition-Based Applications in Disease Diagnosis. Bioengineering 2022;9(7):273 View
  25. Bendig J, Wolf A, Mark T, Frank A, Mathiebe J, Scheibe M, Müller G, Stahr M, Schmitt J, Reichmann H, Loewenbrück K, Falkenburger B. Feasibility of a Multimodal Telemedical Intervention for Patients with Parkinson’s Disease—A Pilot Study. Journal of Clinical Medicine 2022;11(4):1074 View
  26. Huang W, Zhou Y, Cheung Y, Zhang P, Zha Y, Pang M. Facial Expression Guided Diagnosis of Parkinson's Disease via High-Quality Data Augmentation. IEEE Transactions on Multimedia 2023;25:7037 View
  27. Kuzin A, Glushakov R, Parfenov S, Sapozhnikov K, Lazarev A. Development of an artificial intelligence system for the forecasting of infectious diseases. Fundamental and Clinical Medicine 2023;8(3):143 View
  28. Fang B, Zhao Y, Han G, He J. Expression-Guided Deep Joint Learning for Facial Expression Recognition. Sensors 2023;23(16):7148 View
  29. Yang Y, Lyu J, Wang R, Xu F, Dai Q, Lin H. Reply to: Concerns about using a digital mask to safeguard patient privacy. Nature Medicine 2023;29(7):1660 View
  30. Sun J, Dodge H, Mahoor M. MC-ViViT: Multi-branch Classifier-ViViT to detect Mild Cognitive Impairment in older adults using facial videos. Expert Systems with Applications 2024;238:121929 View
  31. Oliveira G, Ngo Q, Passos L, Papa J, Jodas D, Kumar D. Tabular data augmentation for video-based detection of hypomimia in Parkinson’s disease. Computer Methods and Programs in Biomedicine 2023;240:107713 View
  32. Ho A, Bavli I, Mahal R, McKeown M. Multi-Level Ethical Considerations of Artificial Intelligence Health Monitoring for People Living with Parkinson’s Disease. AJOB Empirical Bioethics 2024;15(3):178 View
  33. Sharma P, Nayak D, Balabantaray B, Tanveer M, Nayak R. A survey on cancer detection via convolutional neural networks: Current challenges and future directions. Neural Networks 2024;169:637 View
  34. Skaramagkas V, Pentari A, Kefalopoulou Z, Tsiknakis M. Multi-Modal Deep Learning Diagnosis of Parkinson’s Disease—A Systematic Review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2023;31:2399 View
  35. Phienphanich P, Lerthirunvibul N, Charnnarong E, Munthuli A, Tantibundhit C, Suwanwela N. Generalizing a Small Facial Image Dataset Using Facial Generative Adversarial Networks for Stroke’s Facial Weakness Screening. IEEE Access 2023;11:64886 View
  36. Park S, No C, Kim S, Han K, Jung J, Kwon K, Lee M. A multimodal screening system for elderly neurological diseases based on deep learning. Scientific Reports 2023;13(1) View
  37. Saadi I, cunningham D, Taleb-Ahmed A, Hadid A, Hillali Y. Driver’s facial expression recognition: A comprehensive survey. Expert Systems with Applications 2024;242:122784 View
  38. Huang J, Lin L, Yu F, He X, Song W, Lin J, Tang Z, Yuan K, Li Y, Huang H, Pei Z, Xian W, Yu-Chian Chen C. Parkinson's severity diagnosis explainable model based on 3D multi-head attention residual network. Computers in Biology and Medicine 2024;170:107959 View
  39. Tang Y, Wu Y, Zhou P, Hu J. Enabling Weakly Supervised Temporal Action Localization From On-Device Learning of the Video Stream. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 2022;41(11):3910 View
  40. Bianchini E, Rinaldi D, Alborghetti M, Simonelli M, D’Audino F, Onelli C, Pegolo E, Pontieri F. The Story behind the Mask: A Narrative Review on Hypomimia in Parkinson’s Disease. Brain Sciences 2024;14(1):109 View
  41. Theofilou P, Tsatiris G, Kollias S. Learning Spatio-Temporal Radon Footprints for Assessment of Parkinson’s Dyskinesia. Electronics 2024;13(3):635 View
  42. Zadoo S, Singh Y, Singh P. Automated Parkinson's Disease Detection: A Review of Techniques, Datasets, Modalities, and Open Challenges. International Journal on Smart Sensing and Intelligent Systems 2024;17(1) View
  43. Hall N, Hallquist M, Martin E, Lian W, Jonas K, Kotov R. Automating the analysis of facial emotion expression dynamics: A computational framework and application in psychotic disorders. Proceedings of the National Academy of Sciences 2024;121(14) View
  44. Lv C, Fan L, Li H, Ma J, Jiang W, Ma X. Leveraging multimodal deep learning framework and a comprehensive audio-visual dataset to advance Parkinson’s detection. Biomedical Signal Processing and Control 2024;95:106480 View
  45. Kaur M, Kumar M. Facial emotion recognition: A comprehensive review. Expert Systems 2024;41(10) View
  46. Munsif M, Sajjad M, Ullah M, Tarekegn A, Cheikh F, Tsakanikas P, Muhammad K. Optimized efficient attention-based network for facial expressions analysis in neurological health care. Computers in Biology and Medicine 2024;179:108822 View
  47. Zhang F, Chai L. A review of research on micro-expression recognition algorithms based on deep learning. Neural Computing and Applications 2024 View
  48. Tang W, van Ooijen P, Sival D, Maurits N. Automatic two-dimensional & three-dimensional video analysis with deep learning for movement disorders: A systematic review. Artificial Intelligence in Medicine 2024;156:102952 View
  49. Sun Y, Wang Z, Liang Y, Hao C, Shi C. Digital biomarkers for precision diagnosis and monitoring in Parkinson’s disease. npj Digital Medicine 2024;7(1) View
  50. Zhu J, Ding Y, Liu H, Chen K, Lin Z, Hong W. Emotion knowledge-based fine-grained facial expression recognition. Neurocomputing 2024;610:128536 View
  51. Nahass G, Peterson J, Heinze K, Choudhary A, Khandwala N, Purnell C, Setabutr P, Tran A. FaceFinder: A machine learning tool for identification of facial images from heterogenous datasets. AJO International 2024;1(4):100083 View

Books/Policy Documents

  1. Munsif M, Ullah M, Ahmad B, Sajjad M, Cheikh F. Artificial Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops. View
  2. Wibowo H, Soflano M, Suharso W. Diverse Perspectives and State-of-the-Art Approaches to the Utilization of Data-Driven Clinical Decision Support Systems. View
  3. Hou X, Qin S, Su J. Proceedings of 2021 Chinese Intelligent Automation Conference. View
  4. Urso D, van Wamelen D, Trivedi D, Ray Chaudhuri K, Falup-Pecurariu C. Digital Technologies in Movement Disorders. View
  5. Wright L. Digital Mental Health. View
  6. Bordallo López M, Álvarez Casado C, Susarla P, Lage Cañellas M, Nguyen L. Handbook of Digital Technologies in Movement Disorders. View