Published on in Vol 22, No 10 (2020): October

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/18581, first published .
Googling for Ticks and Borreliosis in Germany: Nationwide Google Search Analysis From 2015 to 2018

Googling for Ticks and Borreliosis in Germany: Nationwide Google Search Analysis From 2015 to 2018

Googling for Ticks and Borreliosis in Germany: Nationwide Google Search Analysis From 2015 to 2018

Journals

  1. Pilz A, Tizek L, Rüth M, Seiringer P, Biedermann T, Zink A. Interest in Sexually Transmitted Infections: Analysis of Web Search Data Terms in Eleven Large German Cities from 2015 to 2019. International Journal of Environmental Research and Public Health 2021;18(5):2771 View
  2. Coiffier G, Tattevin P. Lyme disease: “End of the debate?”. Joint Bone Spine 2021;88(4):105181 View
  3. Coiffier G, Tattevin P. Maladie de Lyme : « la fin des controverses ? ». Revue du Rhumatisme 2021;88(4):264 View
  4. Berr K, Tizek L, Schielein M, Welcker M, Knitza J, Kleinert S, Zink A. Analyzing web searches for axial spondyloarthritis in Germany: a novel approach to exploring interests and unmet needs. Rheumatology International 2023;43(6):1111 View
  5. Ziehfreund S, Tizek L, Zink A. Websearch-Daten als Gesundheitsdaten?. Der Hautarzt 2022;73(1):53 View
  6. Simonart T, Lam Hoai X, de Maertelaer V. Worldwide Evolution of Vaccinable and Nonvaccinable Viral Skin Infections: Google Trends Analysis. JMIR Dermatology 2022;5(4):e35034 View
  7. Lavan R, Normile D, Husain I, Singh A, Armstrong R, Heaney K. An assessment of canine ectoparasiticide administration compliance in the USA. Parasites & Vectors 2022;15(1) View
  8. Simonart T, Lam Hoai X, De Maertelaer V. Epidemiologic evolution of common cutaneous infestations and arthropod bites: A Google Trends analysis. JAAD International 2021;5:69 View
  9. Schielein L, Tizek L, Biedermann T, Zink A. Tick bites in different professions and regions: pooled cross-sectional study in the focus area Bavaria, Germany. BMC Public Health 2022;22(1) View
  10. Wallnöfer F, Erbas M, Tizek L, Schuster B, Wecker H, Biedermann T, Zink A. Leveraging web search data to explore public interest in psoriasis in Germany. JEADV Clinical Practice 2022;1(3):254 View
  11. Sitaru S, Tizek L, Buters J, Ekebom A, Wallin J, Zink A. Assessing the national burden of allergic asthma by web-search data, pollen counts, and drug prescriptions in Germany and Sweden. World Allergy Organization Journal 2023;16(2):100752 View
  12. Hilker C, Tizek L, Rüth M, Schielein M, Biedermann T, Zink A. Leveraging internet search data to assess prevalence, interest, and unmet needs of sarcoidosis in Germany. Scientific Reports 2021;11(1) View
  13. Tizek L, Schielein M, Tizek L, Zink A. Atopische Dermatitis – Identifikation von Bedürfnissen der deutschen Bevölkerung mittels Internetsuchanfragen. Der Hautarzt 2022;73(6):475 View
  14. Wu J, Tizek L, Rueth M, Wecker H, Kain A, Biedermann T, Zink A. The national burden of scabies in Germany: a population-based approach using Internet search engine data. Infection 2022;50(4):915 View
  15. Schober A, Tizek L, Johansson E, Ekebom A, Wallin J, Buters J, Schneider S, Zink A. Monitoring disease activity of pollen allergies: What crowdsourced data are telling us. World Allergy Organization Journal 2022;15(12):100718 View
  16. Zeman P. Tick-Bite “Meteo”-Prevention: An Evaluation of Public Responsiveness to Tick Activity Forecasts Available Online. Life 2023;13(9):1908 View
  17. Maxwell S, Brooks C, Kim D, McNeely C, Cho S, Thomas K. Improving Surveillance of Human Tick-Borne Disease Risks: Spatial Analysis Using Multimodal Databases. JMIR Public Health and Surveillance 2023;9:e43790 View
  18. Laison E, Hamza Ibrahim M, Boligarla S, Li J, Mahadevan R, Ng A, Muthuramalingam V, Lee W, Yin Y, Nasri B. Identifying Potential Lyme Disease Cases Using Self-Reported Worldwide Tweets: Deep Learning Modeling Approach Enhanced With Sentimental Words Through Emojis. Journal of Medical Internet Research 2023;25:e47014 View
  19. Boligarla S, Laison E, Li J, Mahadevan R, Ng A, Lin Y, Thioub M, Huang B, Ibrahim M, Nasri B. Leveraging machine learning approaches for predicting potential Lyme disease cases and incidence rates in the United States using Twitter. BMC Medical Informatics and Decision Making 2023;23(1) View
  20. Özistanbullu D, Weber R, Schröder M, Kippenberger S, Kleemann J, Stege H, Kaufmann R, Schilling B, Grabbe S, Wilhelm R. Exploring the Thoughts, Needs and Fears of Chemotherapy Patients—An Analysis Based on Google Search Behavior. Healthcare 2024;12(17):1689 View