Published on in Vol 19, No 12 (2017): December

Preprints (earlier versions) of this paper are available at, first published .
Estimation of Symptom Severity During Chemotherapy From Passively Sensed Data: Exploratory Study

Estimation of Symptom Severity During Chemotherapy From Passively Sensed Data: Exploratory Study

Estimation of Symptom Severity During Chemotherapy From Passively Sensed Data: Exploratory Study


  1. Aapro M, Bossi P, Dasari A, Fallowfield L, Gascón P, Geller M, Jordan K, Kim J, Martin K, Porzig S. Digital health for optimal supportive care in oncology: benefits, limits, and future perspectives. Supportive Care in Cancer 2020;28(10):4589 View
  2. Mollard E, Michaud K. Mobile Apps for Rheumatoid Arthritis. Rheumatic Disease Clinics of North America 2019;45(2):197 View
  3. Komarzynski S, Huang Q, Lévi F, Palesh O, Ulusakarya A, Bouchahda M, Haydar M, Wreglesworth N, Morère J, Adam R, Innominato P. The day after: correlates of patient-reported outcomes with actigraphy-assessed sleep in cancer patients at home (inCASA project). Sleep 2019;42(10) View
  4. Wright A, Woods W. Personalized Models of Psychopathology. Annual Review of Clinical Psychology 2020;16(1):49 View
  5. Stéphanou A, Fanchon E, Innominato P, Ballesta A. Systems Biology, Systems Medicine, Systems Pharmacology: The What and The Why. Acta Biotheoretica 2018;66(4):345 View
  6. Salsman J, Pustejovsky J, Schueller S, Hernandez R, Berendsen M, McLouth L, Moskowitz J. Psychosocial interventions for cancer survivors: A meta-analysis of effects on positive affect. Journal of Cancer Survivorship 2019;13(6):943 View
  7. Kim Y, Seo J, An S, Sinn D, Hwang J. Efficacy and Safety of an mHealth App and Wearable Device in Physical Performance for Patients With Hepatocellular Carcinoma: Development and Usability Study. JMIR mHealth and uHealth 2020;8(3):e14435 View
  8. Innominato P, Komarzynski S, Karaboué A, Ulusakarya A, Bouchahda M, Haydar M, Bossevot-Desmaris R, Mocquery M, Plessis V, Lévi F. Home-Based e-Health Platform for Multidimensional Telemonitoring of Symptoms, Body Weight, Sleep, and Circadian Activity: Relevance for Chronomodulated Administration of Irinotecan, Fluorouracil-Leucovorin, and Oxaliplatin at Home—Results From a Pilot Study. JCO Clinical Cancer Informatics 2018;(2):1 View
  9. Jim H, Hoogland A, Brownstein N, Barata A, Dicker A, Knoop H, Gonzalez B, Perkins R, Rollison D, Gilbert S, Nanda R, Berglund A, Mitchell R, Johnstone P. Innovations in research and clinical care using patient‐generated health data. CA: A Cancer Journal for Clinicians 2020;70(3):182 View
  10. Innominato P, Komarzynski S, Palesh O, Dallmann R, Bjarnason G, Giacchetti S, Ulusakarya A, Bouchahda M, Haydar M, Ballesta A, Karaboué A, Wreglesworth N, Spiegel D, Lévi F. Circadian rest‐activity rhythm as an objective biomarker of patient‐reported outcomes in patients with advanced cancer. Cancer Medicine 2018;7(9):4396 View
  11. Harris J, Cheevers K, Armes J. The emerging role of digital health in monitoring and supporting people living with cancer and the consequences of its treatments. Current Opinion in Supportive & Palliative Care 2018;12(3):268 View
  12. Low C, Danko M, Durica K, Kunta A, Mulukutla R, Ren Y, Bartlett D, Bovbjerg D, Dey A, Jakicic J. A Real-Time Mobile Intervention to Reduce Sedentary Behavior Before and After Cancer Surgery: Usability and Feasibility Study. JMIR Perioperative Medicine 2020;3(1):e17292 View
  13. Low C. Harnessing consumer smartphone and wearable sensors for clinical cancer research. npj Digital Medicine 2020;3(1) View
  14. Beauchamp U, Pappot H, Holländer-Mieritz C. The Use of Wearables in Clinical Trials During Cancer Treatment: Systematic Review. JMIR mHealth and uHealth 2020;8(11):e22006 View
  15. Moreno-Gutierrez S, Postigo-Martin P, Damas M, Pomares H, Banos O, Arroyo-Morales M, Cantarero-Villanueva I. ATOPE+: An mHealth System to Support Personalized Therapeutic Exercise Interventions in Patients With Cancer. IEEE Access 2021;9:16878 View
  16. Cho S, Ensari I, Weng C, Kahn M, Natarajan K. Factors Affecting the Quality of Person-Generated Wearable Device Data and Associated Challenges: Rapid Systematic Review. JMIR mHealth and uHealth 2021;9(3):e20738 View
  17. Komarzynski S, Wreglesworth N, Griffiths D, Pecchia L, Subbe C, Hughes S, Davies E, Innominato P. Embracing Change: Learnings From Implementing Multidimensional Digital Remote Monitoring in Oncology Patients at a District General Hospital During the COVID-19 Pandemic. JCO Clinical Cancer Informatics 2021;(5):216 View
  18. Cos H, Li D, Williams G, Chininis J, Dai R, Zhang J, Srivastava R, Raper L, Sanford D, Hawkins W, Lu C, Hammill C. Predicting Outcomes in Patients Undergoing Pancreatectomy Using Wearable Technology and Machine Learning: Prospective Cohort Study. Journal of Medical Internet Research 2021;23(3):e23595 View
  19. Onyeaka H, Zambrano J, Longley R, Celano C, Naslund J, Amonoo H. Use of digital health tools for health promotion in cancer survivors. Psycho-Oncology 2021;30(8):1302 View
  20. Low C, Li M, Vega J, Durica K, Ferreira D, Tam V, Hogg M, Zeh III H, Doryab A, Dey A. Digital Biomarkers of Symptom Burden Self-Reported by Perioperative Patients Undergoing Pancreatic Surgery: Prospective Longitudinal Study. JMIR Cancer 2021;7(2):e27975 View
  21. Innominato P, Komarzynski S, Dallmann R, Wreglesworth N, Bouchahda M, Karaboué A, Ulusakarya A, Subbe C, Spiegel D, Lévi F. Impact of assessment frequency of patient-reported outcomes: an observational study using an eHealth platform in cancer patients. Supportive Care in Cancer 2021;29(11):6167 View
  22. Holländer-Mieritz C, Vogelius I, Kristensen C, Green A, Rindum J, Pappot H. Using Biometric Sensor Data to Monitor Cancer Patients During Radiotherapy: Protocol for the OncoWatch Feasibility Study. JMIR Research Protocols 2021;10(5):e26096 View
  23. Mullick T, Radovic A, Shaaban S, Doryab A. Predicting Depression in Adolescents Using Mobile and Wearable Sensors: Multimodal Machine Learning–Based Exploratory Study. JMIR Formative Research 2022;6(6):e35807 View
  24. Dzimitrowicz H, Blakely L, Jones L, LeBlanc T. Bridging New Technology Into Clinical Practice With Mobile Apps, Electronic Patient-Reported Outcomes, and Wearables. American Society of Clinical Oncology Educational Book 2022;(42):94 View
  25. Pavic M, Klaas V, Theile G, Kraft J, Tröster G, Guckenberger M. Feasibility and Usability Aspects of Continuous Remote Monitoring of Health Status in Palliative Cancer Patients Using Wearables. Oncology 2020;98(6):386 View
  26. Keum J, Chung M, Kim Y, Ko H, Sung M, Jo J, Park J, Bang S, Park S, Song S, Lee H. Usefulness of Smartphone Apps for Improving Nutritional Status of Pancreatic Cancer Patients: Randomized Controlled Trial. JMIR mHealth and uHealth 2021;9(8):e21088 View
  27. Fahed M, McManus K, Vahia I, Offodile A. Digital Phenotyping of Behavioral Symptoms as the Next Frontier for Personalized and Proactive Cancer Care. JCO Clinical Cancer Informatics 2022;(6) View
  28. Gibb M, Winter H, Komarzynski S, Wreglesworth N, Innominato P. Holistic Needs Assessment of Cancer Survivors—Supporting the Process Through Digital Monitoring of Circadian Physiology. Integrative Cancer Therapies 2022;21:153473542211235 View
  29. Knauer J, Terhorst Y, Philippi P, Kallinger S, Eiler S, Kilian R, Waldmann T, Moshagen M, Bader M, Baumeister H. Effectiveness and cost-effectiveness of a web-based routine assessment with integrated recommendations for action for depression and anxiety (RehaCAT+): protocol for a cluster randomised controlled trial for patients with elevated depressive symptoms in rehabilitation facilities. BMJ Open 2022;12(6):e061259 View
  30. Kanzawa-Lee G, Ploutz-Snyder R, Larson J, Krauss J, Resnicow K, Lavoie Smith E. Efficacy of the Motivational Interviewing–Walk Intervention for Chemotherapy-Induced Peripheral Neuropathy and Quality of Life During Oxaliplatin Treatment. Cancer Nursing 2022;45(2):E531 View
  31. Steen-Olsen E, Pappot H, Green A, Langberg H, Holländer-Mieritz C. Feasibility of Monitoring Patients Who Have Cancer With a Smart T-shirt: Protocol for the OncoSmartShirt Study. JMIR Research Protocols 2022;11(10):e37626 View
  32. Jacobsen M, Rottmann P, Dembek T, Gerke A, Gholamipoor R, Blum C, Hartmann N, Verket M, Kaivers J, Jäger P, Baermann B, Heinemann L, Marx N, Müller-Wieland D, Kollmann M, Seyfarth M, Kobbe G. Feasibility of Wearable-Based Remote Monitoring in Patients During Intensive Treatment for Aggressive Hematologic Malignancies. JCO Clinical Cancer Informatics 2022;(6) View
  33. Huang Y, Upadhyay U, Dhar E, Kuo L, Syed-Abdul S. A Scoping Review to Assess Adherence to and Clinical Outcomes of Wearable Devices in the Cancer Population. Cancers 2022;14(18):4437 View
  34. Vega J, Li M, Aguillera K, Goel N, Joshi E, Khandekar K, Durica K, Kunta A, Low C. Reproducible Analysis Pipeline for Data Streams: Open-Source Software to Process Data Collected With Mobile Devices. Frontiers in Digital Health 2021;3 View
  35. Huhn S, Axt M, Gunga H, Maggioni M, Munga S, Obor D, Sié A, Boudo V, Bunker A, Sauerborn R, Bärnighausen T, Barteit S. The Impact of Wearable Technologies in Health Research: Scoping Review. JMIR mHealth and uHealth 2022;10(1):e34384 View
  36. Frodi D, Manea V, Diederichsen S, Svendsen J, Wac K, Andersen T. Using Consumer-Wearable Activity Trackers for Risk Prediction of Life-Threatening Heart Arrhythmia in Patients with an Implantable Cardioverter-Defibrillator: An Exploratory Observational Study. Journal of Personalized Medicine 2022;12(6):942 View
  37. Aiyegbusi O, Roydhouse J, Rivera S, Kamudoni P, Schache P, Wilson R, Stephens R, Calvert M. Key considerations to reduce or address respondent burden in patient-reported outcome (PRO) data collection. Nature Communications 2022;13(1) View
  38. Chan A, Chan D, Lee H, Ng C, Yeo A. Reporting adherence, validity and physical activity measures of wearable activity trackers in medical research: A systematic review. International Journal of Medical Informatics 2022;160:104696 View
  39. Jeong H, Jeong Y, Park Y, Kim K, Park J, Kang D. Applications of deep learning methods in digital biomarker research using noninvasive sensing data. DIGITAL HEALTH 2022;8:205520762211366 View
  40. Nestor B, Chimoff J, Koike C, Weitzman E, Riley B, Uhl K, Kossowsky J. Adolescent and Parent Perspectives on Digital Phenotyping in Youths With Chronic Pain: Cross-Sectional Mixed Methods Survey Study. Journal of Medical Internet Research 2024;26:e47781 View
  41. Stuijt D, Radanovic I, Kos M, Schoones J, Stuurman F, Exadaktylos V, Bins A, Bosch J, van Oijen M. Smartphone-Based Passive Sensing in Monitoring Patients With Cancer: A Systematic Review. JCO Clinical Cancer Informatics 2023;(7) View
  42. Aiyegbusi O, Cruz Rivera S, Roydhouse J, Kamudoni P, Alder Y, Anderson N, Baldwin R, Bhatnagar V, Black J, Bottomley A, Brundage M, Cella D, Collis P, Davies E, Denniston A, Efficace F, Gardner A, Gnanasakthy A, Golub R, Hughes S, Jeyes F, Kern S, King-Kallimanis B, Martin A, McMullan C, Mercieca-Bebber R, Monteiro J, Peipert J, Quijano-Campos J, Quinten C, Rantell K, Regnault A, Sasseville M, Schougaard L, Sherafat-Kazemzadeh R, Snyder C, Stover A, Verdi R, Wilson R, Calvert M. Recommendations to address respondent burden associated with patient-reported outcome assessment. Nature Medicine 2024;30(3):650 View

Books/Policy Documents

  1. Ginsburg G, Haga S. Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics. View
  2. Dadhania S, Williams M. Handbook of Artificial Intelligence in Healthcare. View
  3. Terhorst Y, Knauer J, Baumeister H. Digital Phenotyping and Mobile Sensing. View
  4. Harrer M, Terhorst Y, Baumeister H, Ebert D. Digitale Gesundheitsinterventionen. View