Published on in Vol 18, No 8 (2016): August

Characterizing Twitter Discussions About HPV Vaccines Using Topic Modeling and Community Detection

Characterizing Twitter Discussions About HPV Vaccines Using Topic Modeling and Community Detection

Characterizing Twitter Discussions About HPV Vaccines Using Topic Modeling and Community Detection

Journals

  1. Xu Z. Personal stories matter: topic evolution and popularity among pro- and anti-vaccine online articles. Journal of Computational Social Science 2019;2(2):207 View
  2. Tangherlini T, Roychowdhury V, Glenn B, Crespi C, Bandari R, Wadia A, Falahi M, Ebrahimzadeh E, Bastani R. “Mommy Blogs” and the Vaccination Exemption Narrative: Results From A Machine-Learning Approach for Story Aggregation on Parenting Social Media Sites. JMIR Public Health and Surveillance 2016;2(2):e166 View
  3. Shah Z, Surian D, Dyda A, Coiera E, Mandl K, Dunn A. Automatically Appraising the Credibility of Vaccine-Related Web Pages Shared on Social Media: A Twitter Surveillance Study. Journal of Medical Internet Research 2019;21(11):e14007 View
  4. Dyda A, Shah Z, Surian D, Martin P, Coiera E, Dey A, Leask J, Dunn A. HPV vaccine coverage in Australia and associations with HPV vaccine information exposure among Australian Twitter users. Human Vaccines & Immunotherapeutics 2019;15(7-8):1488 View
  5. Stephens A, Wynn C, Stockwell M. Understanding the use of digital technology to promote human papillomavirus vaccination – A RE-AIM framework approach. Human Vaccines & Immunotherapeutics 2019;15(7-8):1549 View
  6. Paul M, Dredze M. Social Monitoring for Public Health. Synthesis Lectures on Information Concepts, Retrieval, and Services 2017;9(5):1 View
  7. Francia M, Gallinucci E, Golfarelli M. Social BI to understand the debate on vaccines on the Web and social media: unraveling the anti-, free, and pro-vax communities in Italy. Social Network Analysis and Mining 2019;9(1) View
  8. Kunneman F, Lambooij M, Wong A, Bosch A, Mollema L. Monitoring stance towards vaccination in twitter messages. BMC Medical Informatics and Decision Making 2020;20(1) View
  9. Zhang J, Centola D. Social Networks and Health: New Developments in Diffusion, Online and Offline. Annual Review of Sociology 2019;45(1):91 View
  10. Liu C, Lu X. Analyzing hidden populations online: topic, emotion, and social network of HIV-related users in the largest Chinese online community. BMC Medical Informatics and Decision Making 2018;18(1) View
  11. Huang M, ElTayeby O, Zolnoori M, Yao L. Public Opinions Toward Diseases: Infodemiological Study on News Media Data. Journal of Medical Internet Research 2018;20(5):e10047 View
  12. Massey P, Leader A, Yom-Tov E, Budenz A, Fisher K, Klassen A. Applying Multiple Data Collection Tools to Quantify Human Papillomavirus Vaccine Communication on Twitter. Journal of Medical Internet Research 2016;18(12):e318 View
  13. Zhang R, Fu J. Linking Network Characteristics of Online Social Networks to Individual Health: A Systematic Review of Literature. Health Communication 2021;36(12):1549 View
  14. Toor R, Chana I. Network Analysis as a Computational Technique and Its Benefaction for Predictive Analysis of Healthcare Data: A Systematic Review. Archives of Computational Methods in Engineering 2021;28(3):1689 View
  15. Son Y, Kang H. A Text Mining Analysis of HPV Vaccination Research Trends. Child Health Nursing Research 2019;25(4):458 View
  16. Du J, Xu J, Song H, Liu X, Tao C. Optimization on machine learning based approaches for sentiment analysis on HPV vaccines related tweets. Journal of Biomedical Semantics 2017;8(1) View
  17. Hong J, Tamakloe R, Lee G, Park D. Insight from Scientific Study in Logistics using Text Mining. Transportation Research Record: Journal of the Transportation Research Board 2019;2673(4):97 View
  18. Mavragani A. Infodemiology and Infoveillance: Scoping Review. Journal of Medical Internet Research 2020;22(4):e16206 View
  19. Rains S. Big Data, Computational Social Science, and Health Communication: A Review and Agenda for Advancing Theory. Health Communication 2020;35(1):26 View
  20. Chen T, Dredze M. Vaccine Images on Twitter: Analysis of What Images are Shared. Journal of Medical Internet Research 2018;20(4):e130 View
  21. Jelodar H, Wang Y, Rabbani M, Xiao G, Zhao R. A Collaborative Framework Based for Semantic Patients-Behavior Analysis and Highlight Topics Discovery of Alcoholic Beverages in Online Healthcare Forums. Journal of Medical Systems 2020;44(5) View
  22. Al-Yazidi S, Berri J, Al-Qurishi M, Al-Alrubaian M. Measuring Reputation and Influence in Online Social Networks: A Systematic Literature Review. IEEE Access 2020;8:105824 View
  23. Lama Y, Chen T, Dredze M, Jamison A, Quinn S, Broniatowski D. Discordance Between Human Papillomavirus Twitter Images and Disparities in Human Papillomavirus Risk and Disease in the United States: Mixed-Methods Analysis. Journal of Medical Internet Research 2018;20(9):e10244 View
  24. Hwang Y, Kim H, Choi H, Lee J. Exploring Abnormal Behavior Patterns of Online Users With Emotional Eating Behavior: Topic Modeling Study. Journal of Medical Internet Research 2020;22(3):e15700 View
  25. Hall G, Bialek W. The statistical mechanics of Twitter communities. Journal of Statistical Mechanics: Theory and Experiment 2019;2019(9):093406 View
  26. Kearney M, Selvan P, Hauer M, Leader A, Massey P. Characterizing HPV Vaccine Sentiments and Content on Instagram. Health Education & Behavior 2019;46(2_suppl):37S View
  27. Raghupathi V, Zhou Y, Raghupathi W. Exploring Big Data Analytic Approaches to Cancer Blog Text Analysis. International Journal of Healthcare Information Systems and Informatics 2019;14(4):1 View
  28. Raghupathi V, Ren J, Raghupathi W. Studying Public Perception about Vaccination: A Sentiment Analysis of Tweets. International Journal of Environmental Research and Public Health 2020;17(10):3464 View
  29. Ortiz R, Smith A, Coyne-Beasley T. A systematic literature review to examine the potential for social media to impact HPV vaccine uptake and awareness, knowledge, and attitudes about HPV and HPV vaccination. Human Vaccines & Immunotherapeutics 2019;15(7-8):1465 View
  30. Bednarczyk R. Addressing HPV vaccine myths: practical information for healthcare providers. Human Vaccines & Immunotherapeutics 2019;15(7-8):1628 View
  31. Massey P, Budenz A, Leader A, Fisher K, Klassen A, Yom-Tov E. What Drives Health Professionals to Tweet About #HPVvaccine? Identifying Strategies for Effective Communication. Preventing Chronic Disease 2018;15 View
  32. Deiner M, Fathy C, Kim J, Niemeyer K, Ramirez D, Ackley S, Liu F, Lietman T, Porco T. Facebook and Twitter vaccine sentiment in response to measles outbreaks. Health Informatics Journal 2019;25(3):1116 View
  33. Zhang J, Le G, Larochelle D, Pasick R, Sawaya G, Sarkar U, Centola D. Facts or stories? How to use social media for cervical cancer prevention: A multi-method study of the effects of sender type and content type on increased message sharing. Preventive Medicine 2019;126:105751 View
  34. Jamison A, Broniatowski D, Smith M, Parikh K, Malik A, Dredze M, Quinn S. Adapting and Extending a Typology to Identify Vaccine Misinformation on Twitter. American Journal of Public Health 2020;110(S3):S331 View
  35. Dunn A, Surian D, Dalmazzo J, Rezazadegan D, Steffens M, Dyda A, Leask J, Coiera E, Dey A, Mandl K. Limited Role of Bots in Spreading Vaccine-Critical Information Among Active Twitter Users in the United States: 2017–2019. American Journal of Public Health 2020;110(S3):S319 View
  36. Leis A, Ronzano F, Mayer M, Furlong L, Sanz F. Evaluating Behavioral and Linguistic Changes During Drug Treatment for Depression Using Tweets in Spanish: Pairwise Comparison Study. Journal of Medical Internet Research 2020;22(12):e20920 View
  37. Karafillakis E, Martin S, Simas C, Olsson K, Takacs J, Dada S, Larson H. Methods for Social Media Monitoring Related to Vaccination: Systematic Scoping Review. JMIR Public Health and Surveillance 2021;7(2):e17149 View
  38. Gallagher J, Lawrence H. Rhetorical Appeals and Tactics in New York Times Comments About Vaccines: Qualitative Analysis. Journal of Medical Internet Research 2020;22(12):e19504 View
  39. Massey P, Kearney M, Hauer M, Selvan P, Koku E, Leader A. Dimensions of Misinformation About the HPV Vaccine on Instagram: Content and Network Analysis of Social Media Characteristics. Journal of Medical Internet Research 2020;22(12):e21451 View
  40. Du J, Luo C, Shegog R, Bian J, Cunningham R, Boom J, Poland G, Chen Y, Tao C. Use of Deep Learning to Analyze Social Media Discussions About the Human Papillomavirus Vaccine. JAMA Network Open 2020;3(11):e2022025 View
  41. Kwok S, Vadde S, Wang G. Tweet Topics and Sentiments Relating to COVID-19 Vaccination Among Australian Twitter Users: Machine Learning Analysis. Journal of Medical Internet Research 2021;23(5):e26953 View
  42. Tacheva Z, Ivanov A. Exploring the Association Between the “Big Five” Personality Traits and Fatal Opioid Overdose: County-Level Empirical Analysis. JMIR Mental Health 2021;8(3):e24939 View
  43. Massaro M, Tamburro P, La Torre M, Dal Mas F, Thomas R, Cobianchi L, Barach P. Non-pharmaceutical Interventions and the Infodemic on Twitter: Lessons Learned from Italy during the Covid-19 Pandemic. Journal of Medical Systems 2021;45(4) View
  44. Lang R, Benham J, Atabati O, Hollis A, Tombe T, Shaffer B, Burns K, MacKean G, Léveillé T, McCormack B, Sheikh H, Fullerton M, Tang T, Boucher J, Constantinescu C, Mourali M, Manns B, Marshall D, Hu J, Oxoby R. Attitudes, behaviours and barriers to public health measures for COVID-19: a survey to inform public health messaging. BMC Public Health 2021;21(1) View
  45. Vlachogiannis D, Xu Y, Jin L, González M. Correlation networks of air particulate matter ($$\hbox {PM}_{2.5}$$): a comparative study. Applied Network Science 2021;6(1) View
  46. Bandy J, Diakopoulos N. More Accounts, Fewer Links. Proceedings of the ACM on Human-Computer Interaction 2021;5(CSCW1):1 View
  47. Lossio-Ventura J, Gonzales S, Morzan J, Alatrista-Salas H, Hernandez-Boussard T, Bian J. Evaluation of clustering and topic modeling methods over health-related tweets and emails. Artificial Intelligence in Medicine 2021;117:102096 View
  48. Dunn A, Steffens M, Dyda A, Mandl K. Knowing when to act: A call for an open misinformation library to guide actionable surveillance. Big Data & Society 2021;8(1) View
  49. Yousefinaghani S, Dara R, Mubareka S, Papadopoulos A, Sharif S. An analysis of COVID-19 vaccine sentiments and opinions on Twitter. International Journal of Infectious Diseases 2021;108:256 View
  50. Zhang J, Xue H, Calabrese C, Chen H, Dang J. Understanding Human Papillomavirus Vaccine Promotions and Hesitancy in Northern California Through Examining Public Facebook Pages and Groups. Frontiers in Digital Health 2021;3 View
  51. Perlstein S, Verboord M, Gesser-Edelsburg A. Lockdowns, lethality, and laissez-faire politics. Public discourses on political authorities in high-trust countries during the COVID-19 pandemic. PLOS ONE 2021;16(6):e0253175 View
  52. Miah S, Vu H, Alahakoon D. A social media analytics perspective for human‐oriented smart city planning and management. Journal of the Association for Information Science and Technology 2022;73(1):119 View
  53. Li S, Wang R, Zhang Y, Lu H, Cai N, Yu Z. Potential social media influencers discrimination for concept marketing in online brand community. Journal of Intelligent & Fuzzy Systems 2021;41(1):317 View
  54. Tomaszewski T, Morales A, Lourentzou I, Caskey R, Liu B, Schwartz A, Chin J. Identifying False Human Papillomavirus (HPV) Vaccine Information and Corresponding Risk Perceptions From Twitter: Advanced Predictive Models. Journal of Medical Internet Research 2021;23(9):e30451 View
  55. Carrignon S, Bentley R, Silk M, Fefferman N, Eksin C. How social learning shapes the efficacy of preventative health behaviors in an outbreak. PLOS ONE 2022;17(1):e0262505 View
  56. Noguera Vivo J, Grandío-Pérez M, Villar-Rodríguez G, Martín A, Camacho D. Desinformación y vacunas en redes. Revista Latina de Comunicación Social 2022;(81):44 View
  57. Osborne M, Kenah E, Lancaster K, Tien J. Catch the tweet to fight the flu: Using Twitter to promote flu shots on a college campus. Journal of American College Health 2023;71(8):2470 View
  58. Delir Haghighi P, Burstein F, Urquhart D, Cicuttini F. Investigating Individuals’ Perceptions Regarding the Context Around the Low Back Pain Experience: Topic Modeling Analysis of Twitter Data. Journal of Medical Internet Research 2021;23(12):e26093 View
  59. Jiang S, Wang P, Liu P, Ngien A, Wu X. Social Media Communication about HPV Vaccine in China: A Study Using Topic Modeling and Survey. Health Communication 2023;38(5):935 View
  60. Melchior C, Oliveira M. Health-related fake news on social media platforms: A systematic literature review. New Media & Society 2022;24(6):1500 View
  61. Luo C, Ji K, Tang Y, Du Z. Exploring the Expression Differences Between Professionals and Laypeople Toward the COVID-19 Vaccine: Text Mining Approach. Journal of Medical Internet Research 2021;23(8):e30715 View
  62. Gour A, Aggarwal S, Kumar S. Lending ears to unheard voices: An empirical analysis of user‐generated content on social media. Production and Operations Management 2022;31(6):2457 View
  63. Jiang L, Chu T, Sun M. Characterization of Vaccine Tweets During the Early Stage of the COVID-19 Outbreak in the United States: Topic Modeling Analysis. JMIR Infodemiology 2021;1(1):e25636 View
  64. Mu W, Lim K, Liu J, Karunasekera S, Falzon L, Harwood A. A clustering-based topic model using word networks and word embeddings. Journal of Big Data 2022;9(1) View
  65. Nova F, Coupe A, Mynatt E, Guha S, Pater J. Cultivating the Community. Proceedings of the ACM on Human-Computer Interaction 2022;6(GROUP):1 View
  66. Jiang S, Ng A, Ngien A. The Effects of Social Media Information Discussion, Perceived Information Overload and Patient Empowerment in Influencing HPV Knowledge. Journal of Health Communication 2022;27(6):407 View
  67. Khademi Habibabadi S, Delir Haghighi P, Burstein F, Buttery J. Vaccine Adverse Event Mining of Twitter Conversations: 2-Phase Classification Study. JMIR Medical Informatics 2022;10(6):e34305 View
  68. Jiang S. Does Social Media Promote or Hinder Health Learning? The Roles of Media Attention, Information Discussion, Information Elaboration, and Information Seeking Experience. Mass Communication and Society 2024;27(4):627 View
  69. Chopra H, Vashishtha A, Pal R, Tyagi A, Sethi T. Mining Trends of COVID-19 Vaccine Beliefs on Twitter With Lexical Embeddings: Longitudinal Observational Study. JMIR Infodemiology 2023;3:e34315 View
  70. Benson R, Hu M, Chen A, Zhu S, Conway M. Examining Cannabis, Tobacco, and Vaping Discourse on Reddit: An Exploratory Approach Using Natural Language Processing. Frontiers in Public Health 2022;9 View
  71. Noguera Vivo J, Grandío-Pérez M, Villar-Rodríguez G, Martín A, Camacho D. Desinformación y vacunas en redes. Revista Latina de Comunicación Social 2022;(81):44 View
  72. Vijaykumar S, Raamkumar A, McCarty K, Mutumbwa C, Mustafa J, Au C, Cotfas L. Themes, communities and influencers of online probiotics chatter: A retrospective analysis from 2009-2017. PLOS ONE 2021;16(10):e0258098 View
  73. Bhagavathula A, Massey P. Google Trends on Human Papillomavirus Vaccine Searches in the United States From 2010 to 2021: Infodemiology Study. JMIR Public Health and Surveillance 2022;8(8):e37656 View
  74. Muric G, Wu Y, Ferrara E. COVID-19 Vaccine Hesitancy on Social Media: Building a Public Twitter Data Set of Antivaccine Content, Vaccine Misinformation, and Conspiracies. JMIR Public Health and Surveillance 2021;7(11):e30642 View
  75. Kim S, Schiffelbein J, Imset I, Olson A. Countering Antivax Misinformation via Social Media: Message-Testing Randomized Experiment for Human Papillomavirus Vaccination Uptake. Journal of Medical Internet Research 2022;24(11):e37559 View
  76. Davidson P, Muniandy T, Karmegam D. Perception of COVID-19 vaccination among Indian Twitter users: computational approach. Journal of Computational Social Science 2023;6(2):541 View
  77. Boucher J, Kim S, Jessiman-Perreault G, Edwards J, Smith H, Frenette N, Badami A, Scott L. HPV vaccine narratives on Twitter during the COVID-19 pandemic: a social network, thematic, and sentiment analysis. BMC Public Health 2023;23(1) View
  78. Laureate C, Buntine W, Linger H. A systematic review of the use of topic models for short text social media analysis. Artificial Intelligence Review 2023;56(12):14223 View
  79. Calabrese C, Zhang J, Yu X. Perceptions of PrEP on Twitter: A Theoretically Guided Content Analysis on the Behavioral Determinants of PrEP Uptake. Health & New Media Research 2022;6(1):65 View
  80. Sano Y, Hori A, Kolahi J. 12-year observation of tweets about rubella in Japan: A retrospective infodemiology study. PLOS ONE 2023;18(5):e0285101 View
  81. Faizah , Lin B. Visualizing Change and Correlation of Topics With LDA and Agglomerative Clustering on COVID-19 Vaccine Tweets. IEEE Access 2023;11:51647 View
  82. Evkoski B, Kralj Novak P, Ljubešić N. Content-based comparison of communities in social networks: Ex-Yugoslavian reactions to the Russian invasion of Ukraine. Applied Network Science 2023;8(1) View
  83. Zhang A, Ong C. “We Are Bulletproof”: The Transcultural Power of Fandom in #StopAsianHate. Sociological Inquiry 2024;94(2):391 View
  84. Li W, Xu S, Zheng X, Sun R. Bridging the Knowledge Gap in Artificial Intelligence: The Roles of Social Media Exposure and Information Elaboration. Science Communication 2024;46(4):399 View
  85. Jessiman-Perreault G, Boucher J, Kim S, Frenette N, Badami A, Smith H, Allen Scott L. The Role of Scientific Research in Human Papillomavirus Vaccine Discussions on Twitter: Social Network Analysis. JMIR Infodemiology 2024;4:e50551 View
  86. Shapiro G, Surian D, Dunn A, Perry R, Kelaher M. Comparing human papillomavirus vaccine concerns on Twitter: a cross-sectional study of users in Australia, Canada and the UK. BMJ Open 2017;7(10):e016869 View
  87. Rai S, Kornides M, Morgan J, Kumar A, Cappella J, Guntuku S. Detecting and monitoring concerns against HPV vaccination on social media using large language models. Scientific Reports 2024;14(1) View
  88. Meacham M, Nobles A, Bone C, Gilbert M, Thrul J, Mitra S. The Reddit cannabis subjective highness rating scale: Applying computational social science to explore psychological and environmental correlates of naturalistic cannabis use. PLOS ONE 2024;19(6):e0300290 View
  89. Pankratz B, Kamiński B, Prałat P. Performance of community detection algorithms supported by node embeddings. Journal of Complex Networks 2024;12(4) View
  90. Shi B, Huang W, Dang Y, Zhou W. Leveraging social media data for pandemic detection and prediction. Humanities and Social Sciences Communications 2024;11(1) View
  91. Rouhani S, Mozaffari F. Comprehensive analytics of COVID-19 vaccine research: From topic modeling to topic classification. Artificial Intelligence in Medicine 2024;157:102980 View
  92. Li J, Shi W. Debates over the role of Traditional Chinese Medicine on COVID-19: A computational comparison between professionals and laypersons in Chinese online knowledge community. Social Science & Medicine 2024;361:117366 View

Books/Policy Documents

  1. Kasthurirathne S, Ho Y, Dixon B. Public Health Informatics and Information Systems. View
  2. Panizo-LLedot A, Torregrosa J, Bello-Orgaz G, Thorburn J, Camacho D. Complex Networks and Their Applications VIII. View
  3. Zhang H, Wheldon C, Tao C, Dunn A, Guo Y, Huo J, Bian J. Social Web and Health Research. View
  4. Wang K, He C, Wang L, Wu J. Knowledge and Systems Sciences. View
  5. Raghupathi V, Zhou Y, Raghupathi W. Research Anthology on Big Data Analytics, Architectures, and Applications. View