Published on in Vol 18, No 6 (2016): Jun
Journals
- Samaras L, García-Barriocanal E, Sicilia M. Syndromic Surveillance Models Using Web Data: The Case of Influenza in Greece and Italy Using Google Trends. JMIR Public Health and Surveillance 2017;3(4):e90 View
- Chang Y, Chiang W, Wang W, Lin C, Hung L, Tsai Y, Suen J, Chen Y. Google Trends-based non-English language query data and epidemic diseases: a cross-sectional study of the popular search behaviour in Taiwan. BMJ Open 2020;10(7):e034156 View
- Zepecki A, Guendelman S, DeNero J, Prata N. Using Application Programming Interfaces to Access Google Data for Health Research: Protocol for a Methodological Framework. JMIR Research Protocols 2020;9(7):e16543 View
- Blasco M, Svider P, Tenbrunsel T, Vellaichamy G, Yoo G, Fribley A, Raza S. Recent trends in oropharyngeal cancer funding and public interest. The Laryngoscope 2017;127(6):1345 View
- Kandula S, Pei S, Shaman J. Improved forecasts of influenza-associated hospitalization rates with Google Search Trends. Journal of The Royal Society Interface 2019;16(155):20190080 View
- Mavragani A. Infodemiology and Infoveillance: Scoping Review. Journal of Medical Internet Research 2020;22(4):e16206 View
- Ford M, Jebb A, Tay L, Diener E. Internet Searches for Affect‐Related Terms: An Indicator of Subjective Well‐Being and Predictor of Health Outcomes across US States and Metro Areas. Applied Psychology: Health and Well-Being 2018;10(1):3 View
- Lambrou G, Hatziagapiou K, Toumpaniaris P, Ioannidou P, Koutsouris D. Computational Modelling in Epidemiological Dispersion Using Diffusion and Epidemiological Equations. International Journal of Reliable and Quality E-Healthcare 2019;8(4):1 View
- Barros J, Duggan J, Rebholz-Schuhmann D. The Application of Internet-Based Sources for Public Health Surveillance (Infoveillance): Systematic Review. Journal of Medical Internet Research 2020;22(3):e13680 View
- Chang Y, Chiang W, Wang W, Lin C, Hung L, Tsai Y, Chen Y. Assessing Epidemic Diseases and Public Opinion through Popular Search Behavior Using Non-English Language Google Trends (Preprint). JMIR Public Health and Surveillance 2018 View
- Brownstein J, Chu S, Marathe A, Marathe M, Nguyen A, Paolotti D, Perra N, Perrotta D, Santillana M, Swarup S, Tizzoni M, Vespignani A, Vullikanti A, Wilson M, Zhang Q. Combining Participatory Influenza Surveillance with Modeling and Forecasting: Three Alternative Approaches. JMIR Public Health and Surveillance 2017;3(4):e83 View
- Kolff C, Scott V, Stockwell M. The use of technology to promote vaccination: A social ecological model based framework. Human Vaccines & Immunotherapeutics 2018;14(7):1636 View
- Sassenberg K. Digitale Medien als Informationsquelle über Umwelt und Gesundheit für Laien. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 2017;60(6):649 View
- Burns S, Turner D, Sexton K, Deng H, Houle T. Using Search Engines to Investigate Shared Migraine Experiences. Headache: The Journal of Head and Face Pain 2017;57(8):1217 View
- Shen C, Chen A, Luo C, Zhang J, Feng B, Liao W. Using Reports of Symptoms and Diagnoses on Social Media to Predict COVID-19 Case Counts in Mainland China: Observational Infoveillance Study. Journal of Medical Internet Research 2020;22(5):e19421 View
- Zhang Z, Zheng X, Zeng D, Leischow S. Tracking Dabbing Using Search Query Surveillance: A Case Study in the United States. Journal of Medical Internet Research 2016;18(9):e252 View
- Sousa-Pinto B, Anto A, Czarlewski W, Anto J, Fonseca J, Bousquet J. Assessment of the Impact of Media Coverage on COVID-19–Related Google Trends Data: Infodemiology Study. Journal of Medical Internet Research 2020;22(8):e19611 View
- Kapitány‐Fövény M, Ferenci T, Sulyok Z, Kegele J, Richter H, Vályi‐Nagy I, Sulyok M. Can Google Trends data improve forecasting of Lyme disease incidence?. Zoonoses and Public Health 2019;66(1):101 View
- Kasson P. Infectious Disease Research in the Era of Big Data. Annual Review of Biomedical Data Science 2020;3(1):43 View
- Johnson A, Bhaumik R, Tabidze I, Mehta S. Nowcasting Sexually Transmitted Infections in Chicago: Predictive Modeling and Evaluation Study Using Google Trends. JMIR Public Health and Surveillance 2020;6(4):e20588 View
- Arseneau M, Backonja U, Litchman M, Karimanfard R, Sheng X, Taylor-Swanson L. #Menopause on Instagram: a mixed-methods study. Menopause 2021;28(4):391 View
- Dey V, Krasniak P, Nguyen M, Lee C, Ning X. A Pipeline to Understand Emerging Illness Via Social Media Data Analysis: Case Study on Breast Implant Illness. JMIR Medical Informatics 2021;9(11):e29768 View
- Jabour A, Varghese J, Damad A, Ghailan K, Mehmood A. Examining the Correlation of Google Influenza Trend with Hospital Data: Retrospective Study. Journal of Multidisciplinary Healthcare 2021;Volume 14:3073 View
- Said Abasse K, Toulouse-Fournier A, Paquet C, Côté A, Smith P, Bergeron F, Archambault P. Collaborative writing applications in support of knowledge translation and management during pandemics: A scoping review. International Journal of Medical Informatics 2022;165:104814 View
- Xiao J, Gao M, Huang M, Zhang W, Du Z, Liu T, Meng X, Ma W, Lin S. How do El Niño Southern Oscillation (ENSO) and local meteorological factors affect the incidence of seasonal influenza in New York state. Hygiene and Environmental Health Advances 2022;4:100040 View
- Ruan Y, Huang T, Zhou W, Zhu J, Liang Q, Zhong L, Tang X, Liu L, Chen S, Xie Y. The lead time and geographical variations of Baidu Search Index in the early warning of COVID-19. Scientific Reports 2023;13(1) View
- Petersen J, Simons H, Patel D, Freedman J. Early detection of perceived risk among users of a UK travel health website compared with internet search activity and media coverage during the 2015–2016 Zika virus outbreak: an observational study. BMJ Open 2017;7(8):e015831 View