Published on in Vol 18, No 6 (2016): Jun

Google Flu Trends Spatial Variability Validated Against Emergency Department Influenza-Related Visits

Google Flu Trends Spatial Variability Validated Against Emergency Department Influenza-Related Visits

Google Flu Trends Spatial Variability Validated Against Emergency Department Influenza-Related Visits

Journals

  1. Samaras L, García-Barriocanal E, Sicilia M. Syndromic Surveillance Models Using Web Data: The Case of Influenza in Greece and Italy Using Google Trends. JMIR Public Health and Surveillance 2017;3(4):e90 View
  2. Chang Y, Chiang W, Wang W, Lin C, Hung L, Tsai Y, Suen J, Chen Y. Google Trends-based non-English language query data and epidemic diseases: a cross-sectional study of the popular search behaviour in Taiwan. BMJ Open 2020;10(7):e034156 View
  3. Zepecki A, Guendelman S, DeNero J, Prata N. Using Application Programming Interfaces to Access Google Data for Health Research: Protocol for a Methodological Framework. JMIR Research Protocols 2020;9(7):e16543 View
  4. Blasco M, Svider P, Tenbrunsel T, Vellaichamy G, Yoo G, Fribley A, Raza S. Recent trends in oropharyngeal cancer funding and public interest. The Laryngoscope 2017;127(6):1345 View
  5. Kandula S, Pei S, Shaman J. Improved forecasts of influenza-associated hospitalization rates with Google Search Trends. Journal of The Royal Society Interface 2019;16(155):20190080 View
  6. Mavragani A. Infodemiology and Infoveillance: Scoping Review. Journal of Medical Internet Research 2020;22(4):e16206 View
  7. Ford M, Jebb A, Tay L, Diener E. Internet Searches for Affect‐Related Terms: An Indicator of Subjective Well‐Being and Predictor of Health Outcomes across US States and Metro Areas. Applied Psychology: Health and Well-Being 2018;10(1):3 View
  8. Lambrou G, Hatziagapiou K, Toumpaniaris P, Ioannidou P, Koutsouris D. Computational Modelling in Epidemiological Dispersion Using Diffusion and Epidemiological Equations. International Journal of Reliable and Quality E-Healthcare 2019;8(4):1 View
  9. Barros J, Duggan J, Rebholz-Schuhmann D. The Application of Internet-Based Sources for Public Health Surveillance (Infoveillance): Systematic Review. Journal of Medical Internet Research 2020;22(3):e13680 View
  10. Chang Y, Chiang W, Wang W, Lin C, Hung L, Tsai Y, Chen Y. Assessing Epidemic Diseases and Public Opinion through Popular Search Behavior Using Non-English Language Google Trends (Preprint). JMIR Public Health and Surveillance 2018 View
  11. Brownstein J, Chu S, Marathe A, Marathe M, Nguyen A, Paolotti D, Perra N, Perrotta D, Santillana M, Swarup S, Tizzoni M, Vespignani A, Vullikanti A, Wilson M, Zhang Q. Combining Participatory Influenza Surveillance with Modeling and Forecasting: Three Alternative Approaches. JMIR Public Health and Surveillance 2017;3(4):e83 View
  12. Kolff C, Scott V, Stockwell M. The use of technology to promote vaccination: A social ecological model based framework. Human Vaccines & Immunotherapeutics 2018;14(7):1636 View
  13. Sassenberg K. Digitale Medien als Informationsquelle über Umwelt und Gesundheit für Laien. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 2017;60(6):649 View
  14. Burns S, Turner D, Sexton K, Deng H, Houle T. Using Search Engines to Investigate Shared Migraine Experiences. Headache: The Journal of Head and Face Pain 2017;57(8):1217 View
  15. Shen C, Chen A, Luo C, Zhang J, Feng B, Liao W. Using Reports of Symptoms and Diagnoses on Social Media to Predict COVID-19 Case Counts in Mainland China: Observational Infoveillance Study. Journal of Medical Internet Research 2020;22(5):e19421 View
  16. Zhang Z, Zheng X, Zeng D, Leischow S. Tracking Dabbing Using Search Query Surveillance: A Case Study in the United States. Journal of Medical Internet Research 2016;18(9):e252 View
  17. Sousa-Pinto B, Anto A, Czarlewski W, Anto J, Fonseca J, Bousquet J. Assessment of the Impact of Media Coverage on COVID-19–Related Google Trends Data: Infodemiology Study. Journal of Medical Internet Research 2020;22(8):e19611 View
  18. Kapitány‐Fövény M, Ferenci T, Sulyok Z, Kegele J, Richter H, Vályi‐Nagy I, Sulyok M. Can Google Trends data improve forecasting of Lyme disease incidence?. Zoonoses and Public Health 2019;66(1):101 View
  19. Kasson P. Infectious Disease Research in the Era of Big Data. Annual Review of Biomedical Data Science 2020;3(1):43 View
  20. Johnson A, Bhaumik R, Tabidze I, Mehta S. Nowcasting Sexually Transmitted Infections in Chicago: Predictive Modeling and Evaluation Study Using Google Trends. JMIR Public Health and Surveillance 2020;6(4):e20588 View
  21. Arseneau M, Backonja U, Litchman M, Karimanfard R, Sheng X, Taylor-Swanson L. #Menopause on Instagram: a mixed-methods study. Menopause 2021;28(4):391 View
  22. Dey V, Krasniak P, Nguyen M, Lee C, Ning X. A Pipeline to Understand Emerging Illness Via Social Media Data Analysis: Case Study on Breast Implant Illness. JMIR Medical Informatics 2021;9(11):e29768 View
  23. Jabour A, Varghese J, Damad A, Ghailan K, Mehmood A. Examining the Correlation of Google Influenza Trend with Hospital Data: Retrospective Study. Journal of Multidisciplinary Healthcare 2021;Volume 14:3073 View
  24. Said Abasse K, Toulouse-Fournier A, Paquet C, Côté A, Smith P, Bergeron F, Archambault P. Collaborative writing applications in support of knowledge translation and management during pandemics: A scoping review. International Journal of Medical Informatics 2022;165:104814 View
  25. Xiao J, Gao M, Huang M, Zhang W, Du Z, Liu T, Meng X, Ma W, Lin S. How do El Niño Southern Oscillation (ENSO) and local meteorological factors affect the incidence of seasonal influenza in New York state. Hygiene and Environmental Health Advances 2022;4:100040 View
  26. Ruan Y, Huang T, Zhou W, Zhu J, Liang Q, Zhong L, Tang X, Liu L, Chen S, Xie Y. The lead time and geographical variations of Baidu Search Index in the early warning of COVID-19. Scientific Reports 2023;13(1) View
  27. Petersen J, Simons H, Patel D, Freedman J. Early detection of perceived risk among users of a UK travel health website compared with internet search activity and media coverage during the 2015–2016 Zika virus outbreak: an observational study. BMJ Open 2017;7(8):e015831 View

Books/Policy Documents

  1. Lazar J, Feng J, Hochheiser H. Research Methods in Human Computer Interaction. View
  2. Ram S, Tyagi R. Sustainability. View