Published on in Vol 11 , No 1 (2009) :Jan-Mar

Infodemiology and Infoveillance: Framework for an Emerging Set of Public Health Informatics Methods to Analyze Search, Communication and Publication Behavior on the Internet

Infodemiology and Infoveillance: Framework for an Emerging Set of Public Health Informatics Methods to Analyze Search, Communication and Publication Behavior on the Internet

Infodemiology and Infoveillance: Framework for an Emerging Set of Public Health Informatics Methods to Analyze Search, Communication and Publication Behavior on the Internet

Authors of this article:

Gunther Eysenbach 1, 2


  1. Althouse B, Ng Y, Cummings D, Crockett R. Prediction of Dengue Incidence Using Search Query Surveillance. PLoS Neglected Tropical Diseases 2011;5(8):e1258 View
  2. Konovalov S, Scotch M, Post L, Brandt C. Biomedical Informatics Techniques for Processing and Analyzing Web Blogs of Military Service Members. Journal of Medical Internet Research 2010;12(4):e45 View
  3. Grajales III F, Sheps S, Ho K, Novak-Lauscher H, Eysenbach G. Social Media: A Review and Tutorial of Applications in Medicine and Health Care. Journal of Medical Internet Research 2014;16(2):e13 View
  4. Odlum M, Yoon S, Broadwell P, Brewer R, Kuang D. How Twitter Can Support the HIV/AIDS Response to Achieve the 2030 Eradication Goal: In-Depth Thematic Analysis of World AIDS Day Tweets. JMIR Public Health and Surveillance 2018;4(4):e10262 View
  5. Weitzman E, Magane K, Chen P, Amiri H, Naimi T, Wisk L. Online Searching and Social Media to Detect Alcohol Use Risk at Population Scale. American Journal of Preventive Medicine 2020;58(1):79 View
  6. Logghe H, Selby L, Boeck M, Stamp N, Chuen J, Jones C. The academic tweet: Twitter as a tool to advance academic surgery. Journal of Surgical Research 2018;226:viii View
  7. Kolliakou A, Ball M, Derczynski L, Chandran D, Gkotsis G, Deluca P, Jackson R, Shetty H, Stewart R. Novel psychoactive substances: An investigation of temporal trends in social media and electronic health records. European Psychiatry 2016;38:15 View
  8. Delir Haghighi P, Kang Y, Buchbinder R, Burstein F, Whittle S. Investigating Subjective Experience and the Influence of Weather Among Individuals With Fibromyalgia: A Content Analysis of Twitter. JMIR Public Health and Surveillance 2017;3(1):e4 View
  9. Brigo F, Igwe S, Ausserer H, Nardone R, Tezzon F, Bongiovanni L, Trinka E. Why do people Google epilepsy?. Epilepsy & Behavior 2014;31:67 View
  10. de Vries H, Logister M, Krekels G, Klaasse F, Servranckx V, van Osch L. Internet based Computer Tailored Feedback on Sunscreen Use. Journal of Medical Internet Research 2012;14(2):e48 View
  11. Reuter K, Zhu Y, Angyan P, Le N, Merchant A, Zimmer M. Public Concern About Monitoring Twitter Users and Their Conversations to Recruit for Clinical Trials: Survey Study. Journal of Medical Internet Research 2019;21(10):e15455 View
  12. Fisher J, Clayton M. Who Gives a Tweet: Assessing Patients’ Interest in the Use of Social Media for Health Care. Worldviews on Evidence-Based Nursing 2012;9(2):100 View
  13. C.K. Choi B. What Could Be Future Scenarios?—Lessons from the History of Public Health Surveillance for the Future. AIMS Public Health 2015;2(1):27 View
  14. Park H, Park S, Chong M. Conversations and Medical News Frames on Twitter: Infodemiological Study on COVID-19 in South Korea. Journal of Medical Internet Research 2020;22(5):e18897 View
  15. Hernández-García I, Giménez-Júlvez T. Assessment of Health Information About COVID-19 Prevention on the Internet: Infodemiological Study. JMIR Public Health and Surveillance 2020;6(2):e18717 View
  16. Bernardo T, Rajic A, Young I, Robiadek K, Pham M, Funk J. Scoping Review on Search Queries and Social Media for Disease Surveillance: A Chronology of Innovation. Journal of Medical Internet Research 2013;15(7):e147 View
  17. Roccetti M, Marfia G, Salomoni P, Prandi C, Zagari R, Gningaye Kengni F, Bazzoli F, Montagnani M. Attitudes of Crohn’s Disease Patients: Infodemiology Case Study and Sentiment Analysis of Facebook and Twitter Posts. JMIR Public Health and Surveillance 2017;3(3):e51 View
  18. Mavragani A. Infodemiology and Infoveillance: Scoping Review. Journal of Medical Internet Research 2020;22(4):e16206 View
  19. Litchman M, Wawrzynski S, Woodruff W, Arrington J, Nguyen Q, Gee P. Continuous Glucose Monitoring in the Real World Using Photosurveillance of #Dexcom on Instagram: Exploratory Mixed Methods Study. JMIR Public Health and Surveillance 2019;5(2):e11024 View
  20. Park S, Lee S, Kwak J, Cha M, Jeong B. Activities on Facebook Reveal the Depressive State of Users. Journal of Medical Internet Research 2013;15(10):e217 View
  21. Seo D, Jo M, Sohn C, Shin S, Lee J, Yu M, Kim W, Lim K, Lee S. Cumulative Query Method for Influenza Surveillance Using Search Engine Data. Journal of Medical Internet Research 2014;16(12):e289 View
  22. Leider J, Shah G, Williams K, Gupta A, Castrucci B. Data, Staff, and Money: Leadership Reflections on the Future of Public Health Informatics. Journal of Public Health Management and Practice 2017;23(3):302 View
  23. Sharpe J, Hopkins R, Cook R, Striley C. Evaluating Google, Twitter, and Wikipedia as Tools for Influenza Surveillance Using Bayesian Change Point Analysis: A Comparative Analysis. JMIR Public Health and Surveillance 2016;2(2):e161 View
  24. Hernández-García I, Giménez-Júlvez T. Characteristics of YouTube Videos in Spanish on How to Prevent COVID-19. International Journal of Environmental Research and Public Health 2020;17(13):4671 View
  25. Chen A, Zhu S, Conway M. What Online Communities Can Tell Us About Electronic Cigarettes and Hookah Use: A Study Using Text Mining and Visualization Techniques. Journal of Medical Internet Research 2015;17(9):e220 View
  26. Sharma P, Kaur P. Effectiveness of web-based social sensing in health information dissemination—A review. Telematics and Informatics 2017;34(1):194 View
  27. Sueki H. The association of suicide-related Twitter use with suicidal behaviour: A cross-sectional study of young internet users in Japan. Journal of Affective Disorders 2015;170:155 View
  28. Haines-Delmont A, Chahal G, Bruen A, Wall A, Khan C, Sadashiv R, Fearnley D. Testing Suicide Risk Prediction Algorithms Using Phone Measurements With Patients in Acute Mental Health Settings: Feasibility Study. JMIR mHealth and uHealth 2020;8(6):e15901 View
  29. Borodovsky J, Marsch L, Budney A. Studying Cannabis Use Behaviors With Facebook and Web Surveys: Methods and Insights. JMIR Public Health and Surveillance 2018;4(2):e48 View
  30. Horvitz E, White R. Making Connections. Circulation: Cardiovascular Quality and Outcomes 2017;10(3) View
  31. van Velsen L, van Gemert-Pijnen J, Beaujean D, Wentzel J, van Steenbergen J. Should Health Organizations Use Web 2.0 Media in Times of an Infectious Disease Crisis? An In-depth Qualitative Study of Citizens’ Information Behavior During an EHEC Outbreak. Journal of Medical Internet Research 2012;14(6):e181 View
  32. Williams S, Terras M, Warwick C. How Twitter Is Studied in the Medical Professions: A Classification of Twitter Papers Indexed in PubMed. Medicine 2.0 2013;2(2):e2 View
  33. Mowery D, Smith H, Cheney T, Stoddard G, Coppersmith G, Bryan C, Conway M. Understanding Depressive Symptoms and Psychosocial Stressors on Twitter: A Corpus-Based Study. Journal of Medical Internet Research 2017;19(2):e48 View
  34. Musa I, Park H, Munkhdalai L, Ryu K. Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization. Sustainability 2018;10(10):3414 View
  35. Eysenbach G. Infodemiology and Infoveillance. American Journal of Preventive Medicine 2011;40(5):S154 View
  36. Borchert J, Wang B, Ramzanali M, Stein A, Malaiyandi L, Dineley K. Adverse Events Due to Insomnia Drugs Reported in a Regulatory Database and Online Patient Reviews: Comparative Study. Journal of Medical Internet Research 2019;21(11):e13371 View
  37. Panatto D, Domnich A, Gasparini R, Bonanni P, Icardi G, Amicizia D, Arata L, Bragazzi N, Signori A, Landa P, Bechini A, Boccalini S. Development and preliminary data on the use of a mobile app specifically designed to increase community awareness of invasive pneumococcal disease and its prevention. Human Vaccines & Immunotherapeutics 2016;12(4):1080 View
  38. Birnbaum D, Borycki E, Karras B, Denham E, Lacroix P. Addressing Public Health informatics patient privacy concerns. Clinical Governance: An International Journal 2015;20(2):91 View
  39. Horvitz E, Mulligan D. Data, privacy, and the greater good. Science 2015;349(6245):253 View
  40. Primack B, Carroll M, Shensa A, Davis W, Levine M. Sex Differences in Hookah-Related Images Posted on Tumblr: A Content Analysis. Journal of Health Communication 2016;21(3):366 View
  41. Taylor J, Pagliari C. Comprehensive scoping review of health research using social media data. BMJ Open 2018;8(12):e022931 View
  42. Paguio J, Yao J, Dee E. Silver lining of COVID-19: Heightened global interest in pneumococcal and influenza vaccines, an infodemiology study. Vaccine 2020;38(34):5430 View
  43. Menachemi N, Rahurkar S, Rahurkar M. Using Web-Based Search Data to Study the Public’s Reactions to Societal Events: The Case of the Sandy Hook Shooting. JMIR Public Health and Surveillance 2017;3(1):e12 View
  44. Dolley S. Big Data’s Role in Precision Public Health. Frontiers in Public Health 2018;6 View
  45. Zepecki A, Guendelman S, DeNero J, Prata N. Using Application Programming Interfaces to Access Google Data for Health Research: Protocol for a Methodological Framework. JMIR Research Protocols 2020;9(7):e16543 View
  46. Lind J, Kälvemark Sporrong S, Kaae S, Rantanen J, Genina N. Social aspects in additive manufacturing of pharmaceutical products. Expert Opinion on Drug Delivery 2017;14(8):927 View
  47. Melkers J, Hicks D, Rosenblum S, Isett K, Elliott J. Dental Blogs, Podcasts, and Associated Social Media: Descriptive Mapping and Analysis. Journal of Medical Internet Research 2017;19(7):e269 View
  48. Lee B. Epidemiologic Research and Web 2.0—the User-driven Web. Epidemiology 2010;21(6):760 View
  49. Conway M, O’Connor D. Social media, big data, and mental health: current advances and ethical implications. Current Opinion in Psychology 2016;9:77 View
  50. Sooknanan J, Comissiong D. Trending on Social Media: Integrating Social Media into Infectious Disease Dynamics. Bulletin of Mathematical Biology 2020;82(7) View
  51. Rajan A, Sharaf R, Brown R, Sharaiha R, Lebwohl B, Mahadev S. Association of Search Query Interest in Gastrointestinal Symptoms With COVID-19 Diagnosis in the United States: Infodemiology Study. JMIR Public Health and Surveillance 2020;6(3):e19354 View
  52. Noll-Hussong M. Whiplash Syndrome Reloaded: Digital Echoes of Whiplash Syndrome in the European Internet Search Engine Context. JMIR Public Health and Surveillance 2017;3(1):e15 View
  53. Cole-Lewis H, Pugatch J, Sanders A, Varghese A, Posada S, Yun C, Schwarz M, Augustson E. Social Listening: A Content Analysis of E-Cigarette Discussions on Twitter. Journal of Medical Internet Research 2015;17(10):e243 View
  54. Loubet P, Guerrisi C, Turbelin C, Blondel B, Launay O, Bardou M, Blanchon T, Bonmarin I, Goffinet F, Ancel P, Colizza V, Hanslik T, Kernéis S. First nationwide web-based surveillance system for influenza-like illness in pregnant women: participation and representativeness of the French G-GrippeNet cohort. BMC Public Health 2016;16(1) View
  55. Khan C, Woodward S. Calibrating actigraphy to improve sleep efficiency estimates. Journal of Sleep Research 2018;27(4):e12613 View
  56. Zhang N, Campo S, Janz K, Eckler P, Yang J, Snetselaar L, Signorini A. Electronic Word of Mouth on Twitter About Physical Activity in the United States: Exploratory Infodemiology Study. Journal of Medical Internet Research 2013;15(11):e261 View
  57. Klein G, Guidi Neto P, Tezza R. Big Data e mídias sociais: monitoramento das redes como ferramenta de gestão. Saúde e Sociedade 2017;26(1):208 View
  58. Chan K, Ho S, Lam T. Infodemiology of Alcohol Use in Hong Kong Mentioned on Blogs: Infoveillance Study. Journal of Medical Internet Research 2013;15(9):e192 View
  59. Foroughi F, Lam A, Lim M, Saremi N, Ahmadvand A. “Googling” for Cancer: An Infodemiological Assessment of Online Search Interests in Australia, Canada, New Zealand, the United Kingdom, and the United States. JMIR Cancer 2016;2(1):e5 View
  60. Gianfredi V, Bragazzi N, Nucci D, Martini M, Rosselli R, Minelli L, Moretti M. Harnessing Big Data for Communicable Tropical and Sub-Tropical Disorders: Implications From a Systematic Review of the Literature. Frontiers in Public Health 2018;6 View
  61. Sabus C, Johns B, Schultz N, Gagnon K. Exploration of Content and Reach of Physical Therapy-Related Discussion on Twitter. Physical Therapy 2019;99(8):1048 View
  62. Laranjo L, Arguel A, Neves A, Gallagher A, Kaplan R, Mortimer N, Mendes G, Lau A. The influence of social networking sites on health behavior change: a systematic review and meta-analysis. Journal of the American Medical Informatics Association 2015;22(1):243 View
  63. Braithwaite S, Giraud-Carrier C, West J, Barnes M, Hanson C. Validating Machine Learning Algorithms for Twitter Data Against Established Measures of Suicidality. JMIR Mental Health 2016;3(2):e21 View
  64. Barker K. Infectious Insecurities: H1N1 and the politics of emerging infectious disease. Health & Place 2012;18(4):695 View
  65. Strzelecki A, Azevedo A, Albuquerque A. Correlation between the Spread of COVID-19 and the Interest in Personal Protective Measures in Poland and Portugal. Healthcare 2020;8(3):203 View
  66. Lau E, Zheng J, Tsang T, Liao Q, Lewis B, Brownstein J, Sanders S, Wong J, Mekaru S, Rivers C, Wu P, Jiang H, Li Y, Yu J, Zhang Q, Chang Z, Liu F, Peng Z, Leung G, Feng L, Cowling B, Yu H. Accuracy of epidemiological inferences based on publicly available information: retrospective comparative analysis of line lists of human cases infected with influenza A(H7N9) in China. BMC Medicine 2014;12(1) View
  67. Wakamiya S, Matsune S, Okubo K, Aramaki E. Causal Relationships Among Pollen Counts, Tweet Numbers, and Patient Numbers for Seasonal Allergic Rhinitis Surveillance: Retrospective Analysis. Journal of Medical Internet Research 2019;21(2):e10450 View
  68. Hester R. Bioveillance: A Techno-security Infrastructure to Preempt the Dangers of Informationalised Biology. Science as Culture 2020;29(1):153 View
  69. Liu D, Besser G, Leonhard M, Bartosik T, Parzefall T, Brkic F, Mueller C, Riss D. Seasonal Variations in Public Inquiries into Laryngitis: An Infodemiology Study. Journal of Voice 2020 View
  70. Wong P, Fu K, Yau R, Ma H, Law Y, Chang S, Yip P. Accessing Suicide-Related Information on the Internet: A Retrospective Observational Study of Search Behavior. Journal of Medical Internet Research 2013;15(1):e3 View
  71. Tana J, Kettunen J, Eirola E, Paakkonen H. Diurnal Variations of Depression-Related Health Information Seeking: Case Study in Finland Using Google Trends Data. JMIR Mental Health 2018;5(2):e43 View
  72. Anderson J, Hundt E, Dean M, Keim-Malpass J, Lopez R. “The Church of Online Support”. Journal of Family Nursing 2017;23(1):34 View
  73. Rosenblum S, Isett K, Melkers J, Funkhouser E, Hicks D, Gilbert G, Melkers M, McEdward D, Buchberg-Trejo M. The association between professional stratification and use of online sources: Evidence from the National Dental Practice-Based Research Network. Journal of Information Science 2021;47(3):373 View
  74. Onega T, Kamra D, Alford-Teaster J, Hassanpour S. Monitoring of Technology Adoption Using Web Content Mining of Location Information and Geographic Information Systems: A Case Study of Digital Breast Tomosynthesis. JCO Clinical Cancer Informatics 2018;(2):1 View
  75. Liao Q, Yuan J, Dong M, Yang L, Fielding R, Lam W. Public Engagement and Government Responsiveness in the Communications About COVID-19 During the Early Epidemic Stage in China: Infodemiology Study on Social Media Data. Journal of Medical Internet Research 2020;22(5):e18796 View
  76. Syamsuddin M, Fakhruddin M, Sahetapy-Engel J, Soewono E. Causality Analysis of Google Trends and Dengue Incidence in Bandung, Indonesia With Linkage of Digital Data Modeling: Longitudinal Observational Study. Journal of Medical Internet Research 2020;22(7):e17633 View
  77. Young I, Gropp K, Pintar K, Waddell L, Marshall B, Thomas K, McEwen S, Rajić A. Experiences and Attitudes Towards Evidence-Informed Policy-Making Among Research and Policy Stakeholders in the Canadian Agri-Food Public Health Sector. Zoonoses and Public Health 2014:n/a View
  78. Mavragani A, Ochoa G, Tsagarakis K. Assessing the Methods, Tools, and Statistical Approaches in Google Trends Research: Systematic Review. Journal of Medical Internet Research 2018;20(11):e270 View
  79. Wang H, Chen D, Yu H, Chen Y. Forecasting the Incidence of Dementia and Dementia-Related Outpatient Visits With Google Trends: Evidence From Taiwan. Journal of Medical Internet Research 2015;17(11):e264 View
  80. Ferrite S, Friche A. Carta ao editor: epidemiologia contemporânea e fonoaudiologia. Revista CEFAC 2015;17(6):1757 View
  81. Peiper N, Gourdet C, Meinhofer A, Reiman A, Reggente N. Medical Decision-Making Processes and Online Behaviors Among Cannabis Dispensary Staff. Substance Abuse: Research and Treatment 2017;11:117822181772551 View
  82. Gu H, Chen B, Zhu H, Jiang T, Wang X, Chen L, Jiang Z, Zheng D, Jiang J. Importance of Internet Surveillance in Public Health Emergency Control and Prevention: Evidence From a Digital Epidemiologic Study During Avian Influenza A H7N9 Outbreaks. Journal of Medical Internet Research 2014;16(1):e20 View
  83. Iglesia E, Stone C, Flaherty M, Commins S. Regional and temporal awareness of alpha-gal allergy: An infodemiological analysis using Google Trends. The Journal of Allergy and Clinical Immunology: In Practice 2020;8(5):1725 View
  84. Nagel A, Tsou M, Spitzberg B, An L, Gawron J, Gupta D, Yang J, Han S, Peddecord K, Lindsay S, Sawyer M. The Complex Relationship of Realspace Events and Messages in Cyberspace: Case Study of Influenza and Pertussis Using Tweets. Journal of Medical Internet Research 2013;15(10):e237 View
  85. Mooney P, Corcoran P, Ciepluch B. The potential for using volunteered geographic information in pervasive health computing applications. Journal of Ambient Intelligence and Humanized Computing 2013;4(6):731 View
  86. Liang B, Scammon D. Incidence of Online Health Information Search: A Useful Proxy for Public Health Risk Perception. Journal of Medical Internet Research 2013;15(6):e114 View
  87. Zhang Z, Zheng X, Zeng D, Leischow S. Tracking Dabbing Using Search Query Surveillance: A Case Study in the United States. Journal of Medical Internet Research 2016;18(9):e252 View
  88. Yom-Tov E, Gabrilovich E. Postmarket Drug Surveillance Without Trial Costs: Discovery of Adverse Drug Reactions Through Large-Scale Analysis of Web Search Queries. Journal of Medical Internet Research 2013;15(6):e124 View
  89. Taylor J, Pagliari C. #Deathbedlive: the end-of-life trajectory, reflected in a cancer patient’s tweets. BMC Palliative Care 2018;17(1) View
  90. Debin M, Turbelin C, Blanchon T, Bonmarin I, Falchi A, Hanslik T, Levy-Bruhl D, Poletto C, Colizza V, Moreno Y. Evaluating the Feasibility and Participants’ Representativeness of an Online Nationwide Surveillance System for Influenza in France. PLoS ONE 2013;8(9):e73675 View
  91. Ayers J, Ribisl K, Brownstein J, Carr J. Using Search Query Surveillance to Monitor Tax Avoidance and Smoking Cessation following the United States' 2009 “SCHIP” Cigarette Tax Increase. PLoS ONE 2011;6(3):e16777 View
  92. Noar S, Althouse B, Ayers J, Francis D, Ribisl K. Cancer Information Seeking in the Digital Age. Medical Decision Making 2015;35(1):16 View
  93. Oehler R. An Overview of Social Media in the Practice of Infectious Diseases. Infectious Diseases in Clinical Practice 2012;20(6):370 View
  94. Benis A, Barak Barkan R, Sela T, Harel N. Communication Behavior Changes Between Patients With Diabetes and Healthcare Providers Over 9 Years: Retrospective Cohort Study. Journal of Medical Internet Research 2020;22(8):e17186 View
  95. Fung I, Fu K, Ying Y, Schaible B, Hao Y, Chan C, Tse Z. Chinese social media reaction to the MERS-CoV and avian influenza A(H7N9) outbreaks. Infectious Diseases of Poverty 2013;2(1) View
  96. Zhang L, Xu L, Zhang W. Social media as amplification station: factors that influence the speed of online public response to health emergencies. Asian Journal of Communication 2017;27(3):322 View
  97. Zhang Y, Arab A, Cowling B, Stoto M. Characterizing Influenza surveillance systems performance: application of a Bayesian hierarchical statistical model to Hong Kong surveillance data. BMC Public Health 2014;14(1) View
  98. Xie T, Tan T, Li J. <p>An Extensive Search Trends-Based Analysis of Public Attention on Social Media in the Early Outbreak of COVID-19 in China</p>. Risk Management and Healthcare Policy 2020;Volume 13:1353 View
  99. Bellon-Harn M, Ulep A, Dueppen A, Manchaiah V, Ravi R, Gunjawate D. A Cross-Sectional Study of the Portrayal of Vocal Health in YouTube Videos. Perspectives of the ASHA Special Interest Groups 2020;5(4):867 View
  100. SeyyedHosseini S, Asemi A, Shabani A, CheshmehSohrabi M. An infodemiology study on breast cancer in Iran. The Electronic Library 2018;36(2):258 View
  101. Alvarez-Mon M, Llavero-Valero M, Sánchez-Bayona R, Pereira-Sanchez V, Vallejo-Valdivielso M, Monserrat J, Lahera G, Asunsolo del Barco A, Alvarez-Mon M. Areas of Interest and Stigmatic Attitudes of the General Public in Five Relevant Medical Conditions: Thematic and Quantitative Analysis Using Twitter. Journal of Medical Internet Research 2019;21(5):e14110 View
  102. Khan A, Fleischauer A, Casani J, Groseclose S. The Next Public Health Revolution: Public Health Information Fusion and Social Networks. American Journal of Public Health 2010;100(7):1237 View
  103. Burton S, Tanner K, Giraud-Carrier C, West J, Barnes M. "Right Time, Right Place" Health Communication on Twitter: Value and Accuracy of Location Information. Journal of Medical Internet Research 2012;14(6):e156 View
  104. Mavragani A, Ochoa G. The Internet and the Anti-Vaccine Movement: Tracking the 2017 EU Measles Outbreak. Big Data and Cognitive Computing 2018;2(1):2 View
  105. Walker M, Sulyok M. Online behavioural patterns for Coronavirus disease 2019 (COVID-19) in the United Kingdom. Epidemiology and Infection 2020;148 View
  106. Li J, Xu Q, Cuomo R, Purushothaman V, Mackey T. Data Mining and Content Analysis of the Chinese Social Media Platform Weibo During the Early COVID-19 Outbreak: Retrospective Observational Infoveillance Study. JMIR Public Health and Surveillance 2020;6(2):e18700 View
  107. Manchaiah V, Amlani A, Bricker C, Whitfield C, Ratinaud P. Benefits and Shortcomings of Direct-to-Consumer Hearing Devices: Analysis of Large Secondary Data Generated From Amazon Customer Reviews. Journal of Speech, Language, and Hearing Research 2019;62(5):1506 View
  108. Gao X, Hamzah S, Yiu C, McGrath C, King N. Dental Fear and Anxiety in Children and Adolescents: Qualitative Study Using YouTube. Journal of Medical Internet Research 2013;15(2):e29 View
  109. Prosperi M, Min J, Bian J, Modave F. Big data hurdles in precision medicine and precision public health. BMC Medical Informatics and Decision Making 2018;18(1) View
  110. Reynolds M, Hoi A, Buchanan R. Assessing the quality, reliability and readability of online health information regarding systemic lupus erythematosus. Lupus 2018;27(12):1911 View
  111. Liu S, Chen B, Kuo A. Monitoring Physical Activity Levels Using Twitter Data: Infodemiology Study. Journal of Medical Internet Research 2019;21(6):e12394 View
  112. Stockwell M, Fiks A. Utilizing health information technology to improve vaccine communication and coverage. Human Vaccines & Immunotherapeutics 2013;9(8):1802 View
  113. Dalan D. Clinical data mining and research in the allergy office. Current Opinion in Allergy & Clinical Immunology 2010;10(3):171 View
  114. Zhang A, Albrecht L, Scott S. Using Twitter for Data Collection With Health-Care Consumers. International Journal of Qualitative Methods 2018;17(1):160940691775078 View
  115. Lin Y, Hong Y, Henson B, Stevenson R, Hong S, Lyu T, Liang C. Assessing Patient Experience and Healthcare Quality of Dental Care Using Patient Online Reviews in the United States: Mixed Methods Study. Journal of Medical Internet Research 2020;22(7):e18652 View
  116. Nerlich B, Koteyko N. Crying wolf? Biosecurity and metacommunication in the context of the 2009 swine flu pandemic. Health & Place 2012;18(4):710 View
  117. Moon H, Lee G. Evaluation of Korean-Language COVID-19–Related Medical Information on YouTube: Cross-Sectional Infodemiology Study. Journal of Medical Internet Research 2020;22(8):e20775 View
  118. Brigo F, Erro R. Why do people google movement disorders? An infodemiological study of information seeking behaviors. Neurological Sciences 2016;37(5):781 View
  119. Strekalova Y, Hawkins K, Drusbosky L, Cogle C. Using social media to assess care coordination goals and plans for leukemia patients and survivors. Translational Behavioral Medicine 2018;8(3):481 View
  120. Jones R, Sharkey S, Smithson J, Ford T, Emmens T, Hewis E, Sheaves B, Owens C. Using Metrics to Describe the Participative Stances of Members Within Discussion Forums. Journal of Medical Internet Research 2011;13(1):e3 View
  121. Egeghy P, Sheldon L, Isaacs K, Özkaynak H, Goldsmith M, Wambaugh J, Judson R, Buckley T. Computational Exposure Science: An Emerging Discipline to Support 21st-Century Risk Assessment. Environmental Health Perspectives 2016;124(6):697 View
  122. Tan A, Lee C, Chae J. Exposure to Health (Mis)Information: Lagged Effects on Young Adults' Health Behaviors and Potential Pathways. Journal of Communication 2015;65(4):674 View
  123. Choi B. The Past, Present, and Future of Public Health Surveillance. Scientifica 2012;2012:1 View
  124. Koh S, Gordon A, Wienberg C, Sood S, Morley S, Burke D. Stroke Experiences in Weblogs: A Feasibility Study of Sex Differences. Journal of Medical Internet Research 2014;16(3):e84 View
  125. Gohil S, Vuik S, Darzi A. Sentiment Analysis of Health Care Tweets: Review of the Methods Used. JMIR Public Health and Surveillance 2018;4(2):e43 View
  126. Kim Y, Huang J, Emery S. Garbage in, Garbage Out: Data Collection, Quality Assessment and Reporting Standards for Social Media Data Use in Health Research, Infodemiology and Digital Disease Detection. Journal of Medical Internet Research 2016;18(2):e41 View
  127. Bragazzi N, Guglielmi O, Garbarino a. SleepOMICS: How Big Data Can Revolutionize Sleep Science. International Journal of Environmental Research and Public Health 2019;16(2):291 View
  128. Stefanidis A, Vraga E, Lamprianidis G, Radzikowski J, Delamater P, Jacobsen K, Pfoser D, Croitoru A, Crooks A. Zika in Twitter: Temporal Variations of Locations, Actors, and Concepts. JMIR Public Health and Surveillance 2017;3(2):e22 View
  129. Burton S, Tanner K, Giraud-Carrier C. Leveraging social networks for anytime-anyplace health information. Network Modeling Analysis in Health Informatics and Bioinformatics 2012;1(4):173 View
  130. Sousa-Pinto B, Anto A, Czarlewski W, Anto J, Fonseca J, Bousquet J. Assessment of the Impact of Media Coverage on COVID-19–Related Google Trends Data: Infodemiology Study. Journal of Medical Internet Research 2020;22(8):e19611 View
  131. Mahoney J, Le Moignan E, Long K, Wilson M, Barnett J, Vines J, Lawson S. Feeling alone among 317 million others: Disclosures of loneliness on Twitter. Computers in Human Behavior 2019;98:20 View
  132. Jabaley C, Blum J, Groff R, O’Reilly-Shah V. Global trends in the awareness of sepsis: insights from search engine data between 2012 and 2017. Critical Care 2018;22(1) View
  133. García-Díaz J, Cánovas-García M, Valencia-García R. Ontology-driven aspect-based sentiment analysis classification: An infodemiological case study regarding infectious diseases in Latin America. Future Generation Computer Systems 2020;112:641 View
  134. Gesser-Edelsburg A, Abed Elhadi Shahbari N, Cohen R, Mir Halavi A, Hijazi R, Paz-Yaakobovitch G, Birman Y. Differences in Perceptions of Health Information Between the Public and Health Care Professionals: Nonprobability Sampling Questionnaire Survey. Journal of Medical Internet Research 2019;21(7):e14105 View
  135. Betsch C, Schmid P. Angst essen Impfbereitschaft auf?. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 2013;56(1):124 View
  136. McLean S, Lennon P, Glare P. Internet search query analysis can be used to demonstrate the rapidly increasing public awareness of palliative care in the USA. BMJ Supportive & Palliative Care 2019;9(1):40 View
  137. Hua M, Sadah S, Hristidis V, Talbot P. Health Effects Associated With Electronic Cigarette Use: Automated Mining of Online Forums. Journal of Medical Internet Research 2020;22(1):e15684 View
  138. Șerban O, Thapen N, Maginnis B, Hankin C, Foot V. Real-time processing of social media with SENTINEL: A syndromic surveillance system incorporating deep learning for health classification. Information Processing & Management 2019;56(3):1166 View
  139. Leal Neto O, Dimech G, Libel M, de Souza W, Cesse E, Smolinski M, Oliveira W, Albuquerque J. Saúde na Copa: The World’s First Application of Participatory Surveillance for a Mass Gathering at FIFA World Cup 2014, Brazil. JMIR Public Health and Surveillance 2017;3(2):e26 View
  140. Ganesh R, Singh S, Mishra R, Sagar R. The quality of online media reporting of celebrity suicide in India and its association with subsequent online suicide-related search behaviour among general population: An infodemiology study. Asian Journal of Psychiatry 2020;53:102380 View
  141. Chen P, Chai J, Zhang L, Wang D. Development and Application of a Chinese Webpage Suicide Information Mining System (Sims). Journal of Medical Systems 2014;38(11) View
  142. Adams S. POST-PANOPTIC SURVEILLANCE THROUGH HEALTHCARE RATING SITES. Information, Communication & Society 2013;16(2):215 View
  143. Strzelecki A. Google Medical Update: Why Is the Search Engine Decreasing Visibility of Health and Medical Information Websites?. International Journal of Environmental Research and Public Health 2020;17(4):1160 View
  144. Huber J, Woods T, Fushi A, Duong M, Eidelman A, Zalal A, Urquhart O, Colangelo E, Quinn S, Carrasco-Labra A. Social Media Research Strategy to Understand Clinician and Public Perception of Health Care Messages. JDR Clinical & Translational Research 2020;5(1):71 View
  145. Park K, Kim Y, Kim Y, Cha M, Han W, Oh D. Suggestions for establishing a sustainable risk communication platform for carcinogenic factors. Epidemiology and Health 2014:e2014034 View
  146. Eysenbach G. Can Tweets Predict Citations? Metrics of Social Impact Based on Twitter and Correlation with Traditional Metrics of Scientific Impact. Journal of Medical Internet Research 2011;13(4):e123 View
  147. Giustini D. Social media trends for health librarians: a primer on using social media for clinical disease surveillance. Journal of the Canadian Health Libraries Association / Journal de l'Association des bibliothèques de la santé du Canada 2014;33(2):92 View
  148. Caron A, Chazard E, Muller J, Perichon R, Ferret L, Koutkias V, Beuscart R, Beuscart J, Ficheur G. IT-CARES: an interactive tool for case-crossover analyses of electronic medical records for patient safety. Journal of the American Medical Informatics Association 2017;24(2):323 View
  149. Bragazzi N. Infodemiology and Infoveillance of Multiple Sclerosis in Italy. Multiple Sclerosis International 2013;2013:1 View
  150. Johansen M, Henriksen E, Horsch A, Schuster T, Berntsen G. Electronic Symptom Reporting Between Patient and Provider for Improved Health Care Service Quality: A Systematic Review of Randomized Controlled Trials. Part 1: State of the Art. Journal of Medical Internet Research 2012;14(5):e118 View
  151. Loi M. The Digital Phenotype: a Philosophical and Ethical Exploration. Philosophy & Technology 2019;32(1):155 View
  152. Saha K, Torous J, Ernala S, Rizuto C, Stafford A, De Choudhury M. A computational study of mental health awareness campaigns on social media. Translational Behavioral Medicine 2019;9(6):1197 View
  153. Wang T, Xia Q, Chen X, Jin X. <p>Use of Baidu Index to Track Chinese Online Behavior and Interest in Kidney Stones</p>. Risk Management and Healthcare Policy 2020;Volume 13:705 View
  154. Rezaee M, Goddard B, Sverrisson E, Seigne J, Dagrosa L. ‘Dr Google’: trends in online interest in prostate cancer screening, diagnosis and treatment. BJU International 2019;124(4):629 View
  155. Safarnejad L, Xu Q, Ge Y, Bagavathi A, Krishnan S, Chen S. Identifying Influential Factors in the Discussion Dynamics of Emerging Health Issues on Social Media: Computational Study. JMIR Public Health and Surveillance 2020;6(3):e17175 View
  156. Flanagan J, Skrobanski H, Shi X, Hirst Y. Self-Care Behaviors of Ovarian Cancer Patients Before Their Diagnosis: Proof-of-Concept Study. JMIR Cancer 2019;5(1):e10447 View
  157. Mikal J, Hurst S, Conway M. Ethical issues in using Twitter for population-level depression monitoring: a qualitative study. BMC Medical Ethics 2016;17(1) View
  158. Marcus M, Westra H, Eastwood J, Barnes K. What Are Young Adults Saying About Mental Health? An Analysis of Internet Blogs. Journal of Medical Internet Research 2012;14(1):e17 View
  159. Nagar R, Yuan Q, Freifeld C, Santillana M, Nojima A, Chunara R, Brownstein J. A Case Study of the New York City 2012-2013 Influenza Season With Daily Geocoded Twitter Data From Temporal and Spatiotemporal Perspectives. Journal of Medical Internet Research 2014;16(10):e236 View
  160. Kenney M, Mamo L. The imaginary of precision public health. Medical Humanities 2020;46(3):192 View
  161. Murayama T, Shimizu N, Fujita S, Wakamiya S, Aramaki E, Wen T. Robust two-stage influenza prediction model considering regular and irregular trends. PLOS ONE 2020;15(5):e0233126 View
  162. Husain I, Briggs B, Lefebvre C, Cline D, Stopyra J, O'Brien M, Vaithi R, Gilmore S, Countryman C. Fluctuation of Public Interest in COVID-19 in the United States: Retrospective Analysis of Google Trends Search Data. JMIR Public Health and Surveillance 2020;6(3):e19969 View
  163. Ganasegeran K, Ch’ng A, Aziz Z, Looi I. Population’s health information-seeking behaviors and geographic variations of stroke in Malaysia: an ecological correlation and time series study. Scientific Reports 2020;10(1) View
  164. Harris J, Moreland-Russell S, Choucair B, Mansour R, Staub M, Simmons K. Tweeting for and Against Public Health Policy: Response to the Chicago Department of Public Health's Electronic Cigarette Twitter Campaign. Journal of Medical Internet Research 2014;16(10):e238 View
  165. Bragazzi N, Bacigaluppi S, Robba C, Nardone R, Trinka E, Brigo F. Infodemiology of status epilepticus: A systematic validation of the Google Trends-based search queries. Epilepsy & Behavior 2016;55:120 View
  166. Sznitman S. Analysing Twitter as an Opportunity to Understand Substance Use. SSRN Electronic Journal 2015 View
  167. Risson V, Saini D, Bonzani I, Huisman A, Olson M. Patterns of Treatment Switching in Multiple Sclerosis Therapies in US Patients Active on Social Media: Application of Social Media Content Analysis to Health Outcomes Research. Journal of Medical Internet Research 2016;18(3):e62 View
  168. Faoury M, Upile T, Patel N. Using Google Trends to understand information-seeking behaviour about throat cancer. The Journal of Laryngology & Otology 2019;133(7):610 View
  169. Strieder A, Aguirre P, Lotto M, Cruvinel A, Cruvinel T. Digital behavior surveillance for monitoring the interests of Google users in amber necklace in different countries. International Journal of Paediatric Dentistry 2019;29(5):603 View
  170. Reuter K, Danve A, Deodhar A. Harnessing the power of social media: how can it help in axial spondyloarthritis research?. Current Opinion in Rheumatology 2019;31(4):321 View
  171. Apolinardo-Arzube O, García-Díaz J, Medina-Moreira J, Luna-Aveiga H, Valencia-García R. Evaluating Information-Retrieval Models and Machine-Learning Classifiers for Measuring the Social Perception towards Infectious Diseases. Applied Sciences 2019;9(14):2858 View
  172. Hanson C, Burton S, Giraud-Carrier C, West J, Barnes M, Hansen B. Tweaking and Tweeting: Exploring Twitter for Nonmedical Use of a Psychostimulant Drug (Adderall) Among College Students. Journal of Medical Internet Research 2013;15(4):e62 View
  173. Ripberger J. Capturing Curiosity: Using Internet Search Trends to Measure Public Attentiveness. Policy Studies Journal 2011;39(2):239 View
  174. Nishimoto N, Ota M, Yagahara A, Ogasawara K. Estimating the Duration of Public Concern After the Fukushima Dai-ichi Nuclear Power Station Accident from the Occurrence of Radiation Exposure-Related Terms on Twitter: A Retrospective Data Analysis. JMIR Public Health and Surveillance 2016;2(2):e168 View
  175. Kazemi D, Borsari B, Levine M, Dooley B. Systematic review of surveillance by social media platforms for illicit drug use. Journal of Public Health 2017;39(4):763 View
  176. Salathé M, Khandelwal S, Meyers L. Assessing Vaccination Sentiments with Online Social Media: Implications for Infectious Disease Dynamics and Control. PLoS Computational Biology 2011;7(10):e1002199 View
  177. Cherry J, Gordon K. Stuttering as a Symptom of Concussion. Pediatric Emergency Care 2017;33(11):e137 View
  178. Ni J, Bellon-Harn M, Zhang J, Li Y, Manchaiah V. Twitter Usage Using Common Reference to Tinnitus. American Journal of Audiology 2020;29(2):206 View
  179. Mavragani A, Ochoa G. Infoveillance of infectious diseases in USA: STDs, tuberculosis, and hepatitis. Journal of Big Data 2018;5(1) View
  180. McIver D, Hawkins J, Chunara R, Chatterjee A, Bhandari A, Fitzgerald T, Jain S, Brownstein J. Characterizing Sleep Issues Using Twitter. Journal of Medical Internet Research 2015;17(6):e140 View
  181. Yom-Tov E, Borsa D, Hayward A, McKendry R, Cox I. Automatic Identification of Web-Based Risk Markers for Health Events. Journal of Medical Internet Research 2015;17(1):e29 View
  182. Yeung D. Social Media as a Catalyst for Policy Action and Social Change for Health and Well-Being: Viewpoint. Journal of Medical Internet Research 2018;20(3):e94 View
  183. Li J, Chen W, Xu Q, Shah N, Kohler J, Mackey T. Detection of self-reported experiences with corruption on twitter using unsupervised machine learning. Social Sciences & Humanities Open 2020;2(1):100060 View
  184. Brigo F, Lattanzi S, Bragazzi N, Nardone R, Moccia M, Lavorgna L. Why do people search Wikipedia for information on multiple sclerosis?. Multiple Sclerosis and Related Disorders 2018;20:210 View
  185. Hoyos L, Putra M, Armstrong A, Cheng C, Riestenberg C, Schooler T, Dumesic D. Measures of Patient Dissatisfaction With Health Care in Polycystic Ovary Syndrome: Retrospective Analysis. Journal of Medical Internet Research 2020;22(4):e16541 View
  186. Robillard J, Johnson T, Hennessey C, Beattie B, Illes J, Jenkins N. Aging 2.0: Health Information about Dementia on Twitter. PLoS ONE 2013;8(7):e69861 View
  187. Xu X, Litchman M, Gee P, Whatcott W, Chacon L, Holmes J, Srinivasan S. Predicting Prediabetes Through Facebook Postings: Protocol for a Mixed-Methods Study. JMIR Research Protocols 2018;7(12):e10720 View
  188. Wagner M, Lampos V, Cox I, Pebody R. The added value of online user-generated content in traditional methods for influenza surveillance. Scientific Reports 2018;8(1) View
  189. Brigo F, Igwe S, Nardone R, Orioli A, Otte W. Cancer information disparities on the internet: An infodemiological study. Journal of Cancer Policy 2016;8:33 View
  190. Conway M. Ethical Issues in Using Twitter for Public Health Surveillance and Research: Developing a Taxonomy of Ethical Concepts From the Research Literature. Journal of Medical Internet Research 2014;16(12):e290 View
  191. Anton C. Adverse drug reactions and social media. Adverse Drug Reaction Bulletin 2014;286(1):1103 View
  192. Pervaiz F, Pervaiz M, Abdur Rehman N, Saif U. FluBreaks: Early Epidemic Detection from Google Flu Trends. Journal of Medical Internet Research 2012;14(5):e125 View
  193. Robillard J, Whiteley L, Johnson T, Lim J, Wasserman W, Illes J. Utilizing Social Media to Study Information-Seeking and Ethical Issues in Gene Therapy. Journal of Medical Internet Research 2013;15(3):e44 View
  194. Gianfredi V, Bragazzi N, Mahamid M, Bisharat B, Mahroum N, Amital H, Adawi M. Monitoring public interest toward pertussis outbreaks: an extensive Google Trends–based analysis. Public Health 2018;165:9 View
  195. Balatsoukas P, Kennedy C, Buchan I, Powell J, Ainsworth J. The Role of Social Network Technologies in Online Health Promotion: A Narrative Review of Theoretical and Empirical Factors Influencing Intervention Effectiveness. Journal of Medical Internet Research 2015;17(6):e141 View
  196. Bellon-Harn M, Ni J, Manchaiah V. Twitter usage about autism spectrum disorder. Autism 2020;24(7):1805 View
  197. Daniulaityte R, Carlson R, Brigham G, Cameron D, Sheth A. “Sub is a weird drug:” A web-based study of lay attitudes about use of buprenorphine to self-treat opioid withdrawal symptoms. The American Journal on Addictions 2015;24(5):403 View
  198. Panatto D, Domnich A, Gasparini R, Bonanni P, Icardi G, Amicizia D, Arata L, Carozzo S, Signori A, Bechini A, Boccalini S. An eHealth Project on Invasive Pneumococcal Disease: Comprehensive Evaluation of a Promotional Campaign. Journal of Medical Internet Research 2016;18(12):e316 View
  199. Si Y, Wu H, Liu Q. Factors Influencing Doctors’ Participation in the Provision of Medical Services Through Crowdsourced Health Care Information Websites: Elaboration-Likelihood Perspective Study. JMIR Medical Informatics 2020;8(6):e16704 View
  200. Chang Y, Chiang W, Wang W, Lin C, Hung L, Tsai Y, Suen J, Chen Y. Google Trends-based non-English language query data and epidemic diseases: a cross-sectional study of the popular search behaviour in Taiwan. BMJ Open 2020;10(7):e034156 View
  201. Domnich A, Arbuzova E, Signori A, Amicizia D, Panatto D, Gasparini R. Demand-based web surveillance of sexually transmitted infections in Russia. International Journal of Public Health 2014;59(5):841 View
  202. Hesse B, Hansen D, Finholt T, Munson S, Kellogg W, Thomas J. Social Participation in Health 2.0. Computer 2010;43(11):45 View
  203. Chen B, Zhang J, Jiang Z, Shao J, Jiang T, Wang Z, Liu K, Tang S, Gu H, Jiang J. Media and public reactions toward vaccination during the ‘hepatitis B vaccine crisis’ in China. Vaccine 2015;33(15):1780 View
  204. Mullins C, ffrench-O'Carroll R, Lane J, O'Connor T. Sharing the pain: an observational analysis of Twitter and pain in Ireland. Regional Anesthesia & Pain Medicine 2020;45(8):597 View
  205. Yom-Tov E, Muennig P, El-Sayed A. Web-Based Antismoking Advertising to Promote Smoking Cessation: A Randomized Controlled Trial. Journal of Medical Internet Research 2016;18(11):e306 View
  206. Leal Neto O, Albuquerque C, Albuquerque J, Barbosa C. The Schisto Track: A System for Gathering and Monitoring Epidemiological Surveys by Connecting Geographical Information Systems in Real Time. JMIR mhealth and uhealth 2014;2(1):e10 View
  207. Smolinski M, Crawley A, Olsen J, Jayaraman T, Libel M. Participatory Disease Surveillance: Engaging Communities Directly in Reporting, Monitoring, and Responding to Health Threats. JMIR Public Health and Surveillance 2017;3(4):e62 View
  208. Loubet P, Verger P, Abitbol V, Peyrin-Biroulet L, Launay O. Pneumococcal and influenza vaccine uptake in adults with inflammatory bowel disease in France: Results from a web-based study. Digestive and Liver Disease 2018;50(6):563 View
  209. Ziakas P, Mylonakis E. Web search popularity, publicity, and utilization of direct oral anticoagulants in the United States, 2008–2018. Medicine 2020;99(19):e20005 View
  210. Mavragani A. Tracking COVID-19 in Europe: Infodemiology Approach. JMIR Public Health and Surveillance 2020;6(2):e18941 View
  211. Brigo F, Lattanzi S, Giussani G, Tassi L, Pietrafusa N, Galimberti C, Nardone R, Bragazzi N, Mecarelli O. Italian Wikipedia and epilepsy: An infodemiological study of online information-seeking behavior. Epilepsy & Behavior 2018;81:119 View
  212. Olabe X, León V, Galvan P, de Cabral M, Basogain M, Gomez-Solaetxe M, Larrabe J. Epidemiological Surveillance Using Information Technologies in Paraguay. Biomedical Instrumentation & Technology 2010;44(2):159 View
  213. Brigo F, Igwe S, Nardone R, Lochner P, Tezzon F, Otte W. Wikipedia and neurological disorders. Journal of Clinical Neuroscience 2015;22(7):1170 View
  214. Pobiruchin M, Zowalla R, Wiesner M. Temporal and Location Variations, and Link Categories for the Dissemination of COVID-19–Related Information on Twitter During the SARS-CoV-2 Outbreak in Europe: Infoveillance Study. Journal of Medical Internet Research 2020;22(8):e19629 View
  215. Pereira-Sanchez V, Alvarez-Mon M, Asunsolo del Barco A, Alvarez-Mon M, Teo A. Exploring the Extent of the Hikikomori Phenomenon on Twitter: Mixed Methods Study of Western Language Tweets. Journal of Medical Internet Research 2019;21(5):e14167 View
  216. Wallace R, Stanek D, Griese S, Krulak D, Vora N, Pacha L, Kan V, Said M, Williams C, Burgess T, Clausen S, Austin C, Gabel J, Lehman M, Finelli L, Selvaggi G, Joyce P, Gordin F, Benator D, Bettano A, Cersovsky S, Blackmore C, Jones S, Buchanan B, Fernandez A, Dinelli D, Agnes K, Clark A, Gill J, Irmler M, Blythe D, Mitchell K, Whitman T, Zapor M, Zorich S, Witkop C, Jenkins P, Mora P, Droller D, Turner S, Dunn L, Williams P, Richards C, Ewing G, Chapman K, Corbitt C, Girimont T, Franka R, Recuenco S, Blanton J, Feldman K. A Large-scale, Rapid Public Health Response to Rabies in an Organ Recipient and the Previously Undiagnosed Organ Donor. Zoonoses and Public Health 2014:n/a View
  217. Fox B, Varadarajan R. Use of Twitter to Encourage Interaction in a Multi-campus Pharmacy Management Course. American Journal of Pharmaceutical Education 2011;75(5):88 View
  218. Chary M, Genes N, McKenzie A, Manini A. Leveraging Social Networks for Toxicovigilance. Journal of Medical Toxicology 2013;9(2):184 View
  219. Fernandez-Luque L, Karlsen R, Bonander J. Review of Extracting Information From the Social Web for Health Personalization. Journal of Medical Internet Research 2011;13(1):e15 View
  220. Ayers J, Westmaas J, Leas E, Benton A, Chen Y, Dredze M, Althouse B. Leveraging Big Data to Improve Health Awareness Campaigns: A Novel Evaluation of the Great American Smokeout. JMIR Public Health and Surveillance 2016;2(1):e16 View
  221. Anderson L, Bell H, Gilbert M, Davidson J, Winter C, Barratt M, Win B, Painter J, Menone C, Sayegh J, Dasgupta N. Using Social Listening Data to Monitor Misuse and Nonmedical Use of Bupropion: A Content Analysis. JMIR Public Health and Surveillance 2017;3(1):e6 View
  222. Wakamiya S, Kawai Y, Aramaki E. Twitter-Based Influenza Detection After Flu Peak via Tweets With Indirect Information: Text Mining Study. JMIR Public Health and Surveillance 2018;4(3):e65 View
  223. Uscher-Pines L, Babin S, Farrell C, Hsieh Y, Moskal M, Gaydos C, Rothman R. Research Priorities for Syndromic Surveillance Systems Response. Journal of Public Health Management and Practice 2010;16(6):529 View
  224. Mavragani A, Ochoa G. Forecasting AIDS prevalence in the United States using online search traffic data. Journal of Big Data 2018;5(1) View
  225. Madden K. The Seasonal Periodicity of Healthy Contemplations About Exercise and Weight Loss: Ecological Correlational Study. JMIR Public Health and Surveillance 2017;3(4):e92 View
  226. Scanfeld D, Scanfeld V, Larson E. Dissemination of health information through social networks: Twitter and antibiotics. American Journal of Infection Control 2010;38(3):182 View
  227. Zheluk A, Quinn C, Hercz D, Gillespie J. Internet Search Patterns of Human Immunodeficiency Virus and the Digital Divide in the Russian Federation: Infoveillance Study. Journal of Medical Internet Research 2013;15(11):e256 View
  228. Zhang M, Ho C, Fang P, Lu Y, Ho R. Usage of Social Media and Smartphone Application in Assessment of Physical and Psychological Well-Being of Individuals in Times of a Major Air Pollution Crisis. JMIR mhealth and uhealth 2014;2(1):e16 View
  229. Eysenbach G. How to Fight an Infodemic: The Four Pillars of Infodemic Management. Journal of Medical Internet Research 2020;22(6):e21820 View
  230. Neumark Y, Flum L, Lopez-Quintero C, Shtarkshall R. Quality of online health information about oral contraceptives from Hebrew-language websites. Israel Journal of Health Policy Research 2012;1(1) View
  231. Gesualdo F, Stilo G, Agricola E, Gonfiantini M, Pandolfi E, Velardi P, Tozzi A, Cook A. Influenza-Like Illness Surveillance on Twitter through Automated Learning of Naïve Language. PLoS ONE 2013;8(12):e82489 View
  232. Greyson D, Knight R, Shoveller J. Ethics, effectiveness and population health information interventions: a Canadian analysis. Health Promotion International 2019;34(3):501 View
  233. Hunter R, Gough A, O’Kane N, McKeown G, Fitzpatrick A, Walker T, McKinley M, Lee M, Kee F. Ethical Issues in Social Media Research for Public Health. American Journal of Public Health 2018;108(3):343 View
  234. Kamel Boulos M, Sanfilippo A, Corley C, Wheeler S. Social Web mining and exploitation for serious applications: Technosocial Predictive Analytics and related technologies for public health, environmental and national security surveillance. Computer Methods and Programs in Biomedicine 2010;100(1):16 View
  235. Russo G, di Mauro M, Cocci A, Cacciamani G, Cimino S, Serefoglu E, Albersen M, Capogrosso P, Fode M, Verze P. Consulting “Dr Google” for sexual dysfunction: a contemporary worldwide trend analysis. International Journal of Impotence Research 2020;32(4):455 View
  236. Conway M, Kawazoe A, Chanlekha H, Collier N. Developing a Disease Outbreak Event Corpus. Journal of Medical Internet Research 2010;12(3):e43 View
  237. Prieto J, Jara J, Alvis J, Furlan L, Murray C, Garcia J, Benghozi P, Kaydos-Daniels S. Will Participatory Syndromic Surveillance Work in Latin America? Piloting a Mobile Approach to Crowdsource Influenza-Like Illness Data in Guatemala. JMIR Public Health and Surveillance 2017;3(4):e87 View
  238. Zheluk A, Gillespie J, Quinn C. Searching for Truth: Internet Search Patterns as a Method of Investigating Online Responses to a Russian Illicit Drug Policy Debate. Journal of Medical Internet Research 2012;14(6):e165 View
  239. Mavragani A, Sampri A, Sypsa K, Tsagarakis K. Integrating Smart Health in the US Health Care System: Infodemiology Study of Asthma Monitoring in the Google Era. JMIR Public Health and Surveillance 2018;4(1):e24 View
  240. Curtis B, Alanis-Hirsch K, Kaynak Ö, Cacciola J, Meyers K, McLellan A. Using Web searches to track interest in synthetic cannabinoids (aka ‘herbal incense’). Drug and Alcohol Review 2015;34(1):105 View
  241. Leal-Neto O, Dimech G, Libel M, Oliveira W, Ferreira J. Digital disease detection and participatory surveillance: overview and perspectives for Brazil. Revista de Saúde Pública 2016;50(0) View
  242. Domnich A, Panatto D, Signori A, Lai P, Gasparini R, Amicizia D, Olson D. Age-Related Differences in the Accuracy of Web Query-Based Predictions of Influenza-Like Illness. PLOS ONE 2015;10(5):e0127754 View
  243. Eli K. Latin American countries lead in Google search volumes for anorexia nervosa and bulimia nervosa: Implications for global mental health research. International Journal of Eating Disorders 2018;51(12):1352 View
  244. Lavorgna L, Brigo F, Moccia M, Leocani L, Lanzillo R, Clerico M, Abbadessa G, Schmierer K, Solaro C, Prosperini L, Tedeschi G, Giovannoni G, Bonavita S. e-Health and multiple sclerosis: An update. Multiple Sclerosis Journal 2018;24(13):1657 View
  245. Bekhuis T, Kreinacke M, Spallek H, Song M, O'Donnell J. Using Natural Language Processing to Enable In-depth Analysis of Clinical Messages Posted to an Internet Mailing List: A Feasibility Study. Journal of Medical Internet Research 2011;13(4):e98 View
  246. Olds C. Assessing Presidential Agenda-Setting Capacity: Dynamic Comparisons of Presidential, Mass Media, and Public Attention to Economic Issues. Congress & the Presidency 2013;40(3):255 View
  247. Pagliari C, Vijaykumar S, Churcher T. Digital Participatory Surveillance and the Zika Crisis: Opportunities and Caveats. PLOS Neglected Tropical Diseases 2016;10(6):e0004795 View
  248. Freifeld C, Chunara R, Mekaru S, Chan E, Kass-Hout T, Ayala Iacucci A, Brownstein J. Participatory Epidemiology: Use of Mobile Phones for Community-Based Health Reporting. PLoS Medicine 2010;7(12):e1000376 View
  249. Bhatti J, Redelmeier D. Angelina Jolie and Medical Decision Science. Medical Decision Making 2015;35(1):4 View
  250. Vasconcellos-Silva P, Carvalho D, Trajano V, de La Rocque L, Sawada A, Juvanhol L. Using Google Trends Data to Study Public Interest in Breast Cancer Screening in Brazil: Why Not a Pink February?. JMIR Public Health and Surveillance 2017;3(2):e17 View
  251. Joshi A, Wangmo R, Amadi C. Blogs as Channels for Disseminating Health Technology Innovations. Healthcare Informatics Research 2017;23(3):208 View
  252. Jadhav A, Andrews D, Fiksdal A, Kumbamu A, McCormick J, Misitano A, Nelsen L, Ryu E, Sheth A, Wu S, Pathak J. Comparative Analysis of Online Health Queries Originating From Personal Computers and Smart Devices on a Consumer Health Information Portal. Journal of Medical Internet Research 2014;16(7):e160 View
  253. Caputi T, Ayers J, Dredze M, Suplina N, Burd-Sharps S. Collateral Crises of Gun Preparation and the COVID-19 Pandemic: Infodemiology Study. JMIR Public Health and Surveillance 2020;6(2):e19369 View
  254. Nascimento T, DosSantos M, Danciu T, DeBoer M, van Holsbeeck H, Lucas S, Aiello C, Khatib L, Bender M, Zubieta J, DaSilva A. Real-Time Sharing and Expression of Migraine Headache Suffering on Twitter: A Cross-Sectional Infodemiology Study. Journal of Medical Internet Research 2014;16(4):e96 View
  255. Chary M, Genes N, Giraud-Carrier C, Hanson C, Nelson L, Manini A. Epidemiology from Tweets: Estimating Misuse of Prescription Opioids in the USA from Social Media. Journal of Medical Toxicology 2017;13(4):278 View
  256. French M, Mykhalovskiy E. Public health intelligence and the detection of potential pandemics. Sociology of Health & Illness 2013;35(2):174 View
  257. Loubet P, Guerrisi C, Turbelin C, Blondel B, Launay O, Bardou M, Goffinet F, Colizza V, Hanslik T, Kernéis S. Influenza during pregnancy: Incidence, vaccination coverage and attitudes toward vaccination in the French web-based cohort G-GrippeNet. Vaccine 2016;34(20):2390 View
  258. Dreher P, Tong C, Ghiraldi E, Friedlander J. Use of Google Trends to Track Online Behavior and Interest in Kidney Stone Surgery. Urology 2018;121:74 View
  259. Badell-Grau R, Cuff J, Kelly B, Waller-Evans H, Lloyd-Evans E. Investigating the Prevalence of Reactive Online Searching in the COVID-19 Pandemic: Infoveillance Study. Journal of Medical Internet Research 2020;22(10):e19791 View
  260. Schneider J, Holland C. eHealth Search Patterns: A Comparison of Private and Public Health Care Markets Using Online Panel Data. Journal of Medical Internet Research 2017;19(4):e117 View
  261. Metwally O, Blumberg S, Ladabaum U, Sinha S. Using Social Media to Characterize Public Sentiment Toward Medical Interventions Commonly Used for Cancer Screening: An Observational Study. Journal of Medical Internet Research 2017;19(6):e200 View
  262. Brigo F, Strapazzon G, Otte W, Igwe S, Brugger H. Web search behavior for snow avalanches: an Italian study. Natural Hazards 2016;80(1):141 View
  263. Hill S, Mao J, Ungar L, Hennessy S, Leonard C, Holmes J. Natural Supplements for H1N1 Influenza: Retrospective Observational Infodemiology Study of Information and Search Activity on the Internet. Journal of Medical Internet Research 2011;13(2):e36 View
  264. VELASCO E, AGHENEZA T, DENECKE K, KIRCHNER G, ECKMANNS T. Social Media and Internet-Based Data in Global Systems for Public Health Surveillance: A Systematic Review. Milbank Quarterly 2014;92(1):7 View
  265. Towers S, Afzal S, Bernal G, Bliss N, Brown S, Espinoza B, Jackson J, Judson-Garcia J, Khan M, Lin M, Mamada R, Moreno V, Nazari F, Okuneye K, Ross M, Rodriguez C, Medlock J, Ebert D, Castillo-Chavez C, Ouzounis C. Mass Media and the Contagion of Fear: The Case of Ebola in America. PLOS ONE 2015;10(6):e0129179 View
  266. Al-garadi M, Khan M, Varathan K, Mujtaba G, Al-Kabsi A. Using online social networks to track a pandemic: A systematic review. Journal of Biomedical Informatics 2016;62:1 View
  267. Cervellin G, Comelli I, Lippi G. Is Google Trends a reliable tool for digital epidemiology? Insights from different clinical settings. Journal of Epidemiology and Global Health 2017;7(3):185 View
  268. Leis A, Ronzano F, Mayer M, Furlong L, Sanz F. Detecting Signs of Depression in Tweets in Spanish: Behavioral and Linguistic Analysis. Journal of Medical Internet Research 2019;21(6):e14199 View
  269. Higgins T, Wu A, Sharma D, Illing E, Rubel K, Ting J. Correlations of Online Search Engine Trends With Coronavirus Disease (COVID-19) Incidence: Infodemiology Study. JMIR Public Health and Surveillance 2020;6(2):e19702 View
  270. McIver D, Brownstein J, Salathé M. Wikipedia Usage Estimates Prevalence of Influenza-Like Illness in the United States in Near Real-Time. PLoS Computational Biology 2014;10(4):e1003581 View
  271. Nikfarjam A, Ransohoff J, Callahan A, Jones E, Loew B, Kwong B, Sarin K, Shah N. Early Detection of Adverse Drug Reactions in Social Health Networks: A Natural Language Processing Pipeline for Signal Detection. JMIR Public Health and Surveillance 2019;5(2):e11264 View
  272. Ayers J, Althouse B, Allem J, Ford D, Ribisl K, Cohen J. A Novel Evaluation of World No Tobacco Day in Latin America. Journal of Medical Internet Research 2012;14(3):e77 View
  273. Padrez K, Ungar L, Schwartz H, Smith R, Hill S, Antanavicius T, Brown D, Crutchley P, Asch D, Merchant R. Linking social media and medical record data: a study of adults presenting to an academic, urban emergency department. BMJ Quality & Safety 2016;25(6):414 View
  274. Eddens K, Kreuter M, Morgan J, Beatty K, Jasim S, Garibay L, Tao D, Buskirk T, Jupka K. Disparities by Race and Ethnicity in Cancer Survivor Stories Available on the Web. Journal of Medical Internet Research 2009;11(4):e50 View
  275. Myslín M, Zhu S, Chapman W, Conway M. Using Twitter to Examine Smoking Behavior and Perceptions of Emerging Tobacco Products. Journal of Medical Internet Research 2013;15(8):e174 View
  276. Hua M, Alfi M, Talbot P. Health-Related Effects Reported by Electronic Cigarette Users in Online Forums. Journal of Medical Internet Research 2013;15(4):e59 View
  277. Ling R, Lee J. Disease Monitoring and Health Campaign Evaluation Using Google Search Activities for HIV and AIDS, Stroke, Colorectal Cancer, and Marijuana Use in Canada: A Retrospective Observational Study. JMIR Public Health and Surveillance 2016;2(2):e156 View
  278. Aguirre P, Strieder A, Lotto M, Oliveira T, Rios D, Cruvinel A, Cruvinel T. Are the Internet users concerned about molar incisor hypomineralization? An infoveillance study. International Journal of Paediatric Dentistry 2020;30(1):27 View
  279. Hesse B, Gaysynsky A, Ottenbacher A, Moser R, Blake K, Chou W, Vieux S, Beckjord E. Meeting the Healthy People 2020 Goals: Using the Health Information National Trends Survey to Monitor Progress on Health Communication Objectives. Journal of Health Communication 2014;19(12):1497 View
  280. Miller C, Henderson A, Guidry J, McGuire K, Fuemmeler B. Pinning Pink: Messages About Hereditary Breast Cancer Risk on Pinterest. Journal of Cancer Education 2020 View
  281. Tao Z, Chu G, McGrath C, Hua F, Leung Y, Yang W, Su Y. Nature and Diffusion of COVID-19–related Oral Health Information on Chinese Social Media: Analysis of Tweets on Weibo. Journal of Medical Internet Research 2020;22(6):e19981 View
  282. Manchaiah V, Bellon-Harn M, Godina I, Beukes E, Vinay . Portrayal of Hearing Loss in YouTube Videos: An Exploratory Cross-Sectional Analysis. American Journal of Audiology 2020;29(3):450 View
  283. Johnston E, Campbell K, Coleman T, Lewis S, Orton S, Cooper S. Safety of Electronic Cigarette Use During Breastfeeding: Qualitative Study Using Online Forum Discussions. Journal of Medical Internet Research 2019;21(8):e11506 View
  284. Brigo F, Igwe S, Ausserer H, Nardone R, Tezzon F, Bongiovanni L, Tinazzi M, Trinka E. Terminology of psychogenic nonepileptic seizures. Epilepsia 2015;56(3):e21 View
  285. Mavragani A, Ochoa G. Google Trends in Infodemiology and Infoveillance: Methodology Framework. JMIR Public Health and Surveillance 2019;5(2):e13439 View
  286. Effenberger M, Kronbichler A, Shin J, Mayer G, Tilg H, Perco P. Association of the COVID-19 pandemic with Internet Search Volumes: A Google TrendsTM Analysis. International Journal of Infectious Diseases 2020;95:192 View
  287. Tufts C, Polsky D, Volpp K, Groeneveld P, Ungar L, Merchant R, Pelullo A. Characterizing Tweet Volume and Content About Common Health Conditions Across Pennsylvania: Retrospective Analysis. JMIR Public Health and Surveillance 2018;4(4):e10834 View
  288. Murphy E, Donohue G, McCann E. Exploring Mental Health Issues through the Use of Blogs: A Scoping Review of the Research Evidence. Issues in Mental Health Nursing 2020;41(4):296 View
  289. Pilozzi A, Huang X. Overcoming Alzheimer’s Disease Stigma by Leveraging Artificial Intelligence and Blockchain Technologies. Brain Sciences 2020;10(3):183 View
  290. Shen C, Chen A, Luo C, Zhang J, Feng B, Liao W. Using Reports of Symptoms and Diagnoses on Social Media to Predict COVID-19 Case Counts in Mainland China: Observational Infoveillance Study. Journal of Medical Internet Research 2020;22(5):e19421 View
  291. Leal Neto O, Albuquerque J, Souza W, Cesse E, Cruz O. Inovações disruptivas e as transformações da saúde pública na era digital. Cadernos de Saúde Pública 2017;33(11) View
  292. Brockes C, Grischott T, Dutkiewicz M, Schmidt-Weitmann S. Evaluation of the Education “Clinical Telemedicine/e-Health” in the Curriculum of Medical Students at the University of Zurich. Telemedicine and e-Health 2017;23(11):899 View
  293. Brigo F, Lattanzi S, Kinney M, Bragazzi N, Tassi L, Nardone R, Mecarelli O. Online behavior of people visiting a scientific website on epilepsy. Epilepsy & Behavior 2019;90:79 View
  294. Watad A, Watad S, Mahroum N, Sharif K, Amital H, Bragazzi N, Adawi M. Forecasting the West Nile Virus in the United States: An Extensive Novel Data Streams–Based Time Series Analysis and Structural Equation Modeling of Related Digital Searching Behavior. JMIR Public Health and Surveillance 2019;5(1):e9176 View
  295. Kim M, Jung Y, Jung D, Hur C. Investigating the Congruence of Crowdsourced Information With Official Government Data: The Case of Pediatric Clinics. Journal of Medical Internet Research 2014;16(2):e29 View
  296. Cavazos-Rehg P, Krauss M, Grucza R, Bierut L. Characterizing the Followers and Tweets of a Marijuana-Focused Twitter Handle. Journal of Medical Internet Research 2014;16(6):e157 View
  297. Mimura W, Akazawa M. The Association Between Internet Searches and Moisturizer Prescription in Japan: Retrospective Observational Study. JMIR Public Health and Surveillance 2019;5(4):e13212 View
  298. Zeraatkar K, Ahmadi M. Trends of infodemiology studies: a scoping review. Health Information & Libraries Journal 2018;35(2):91 View
  299. Mackey T, Li J, Purushothaman V, Nali M, Shah N, Bardier C, Cai M, Liang B. Big Data, Natural Language Processing, and Deep Learning to Detect and Characterize Illicit COVID-19 Product Sales: Infoveillance Study on Twitter and Instagram. JMIR Public Health and Surveillance 2020;6(3):e20794 View
  300. Mackey T, Purushothaman V, Li J, Shah N, Nali M, Bardier C, Liang B, Cai M, Cuomo R. Machine Learning to Detect Self-Reporting of Symptoms, Testing Access, and Recovery Associated With COVID-19 on Twitter: Retrospective Big Data Infoveillance Study. JMIR Public Health and Surveillance 2020;6(2):e19509 View
  301. Chung J. A Smoking Cessation Campaign on Twitter: Understanding the Use of Twitter and Identifying Major Players in a Health Campaign. Journal of Health Communication 2016;21(5):517 View
  302. Mahroum N, Watad A, Rosselli R, Brigo F, Chiesa V, Siri A, Ben-Ami Shor D, Martini M, Bragazzi N, Adawi M. An infodemiological investigation of the so-called “Fluad effect” during the 2014/2015 influenza vaccination campaign in Italy: Ethical and historical implications. Human Vaccines & Immunotherapeutics 2018;14(3):712 View
  303. Sentana-Lledo D, Barbu C, Ngo M, Wu Y, Sethuraman K, Levy M. Seasons, Searches, and Intentions: What The Internet Can Tell Us About The Bed Bug (Hemiptera: Cimicidae) Epidemic. Journal of Medical Entomology 2016;53(1):116 View
  304. Matsuda S, Aoki K, Tomizawa S, Sone M, Tanaka R, Kuriki H, Takahashi Y. Analysis of Patient Narratives in Disease Blogs on the Internet: An Exploratory Study of Social Pharmacovigilance. JMIR Public Health and Surveillance 2017;3(1):e10 View
  305. Sinha M, Freifeld C, Brownstein J, Donneyong M, Rausch P, Lappin B, Zhou E, Dal Pan G, Pawar A, Hwang T, Avorn J, Kesselheim A. Social Media Impact of the Food and Drug Administration's Drug Safety Communication Messaging About Zolpidem: Mixed-Methods Analysis. JMIR Public Health and Surveillance 2018;4(1):e1 View
  306. Hanson C, Cannon B, Burton S, Giraud-Carrier C. An Exploration of Social Circles and Prescription Drug Abuse Through Twitter. Journal of Medical Internet Research 2013;15(9):e189 View
  307. Lampos V, Miller A, Crossan S, Stefansen C. Advances in nowcasting influenza-like illness rates using search query logs. Scientific Reports 2015;5(1) View
  308. Wang T, Wang F, Shi L. The use of microblog-based case studies in a pharmacotherapy introduction class in China. BMC Medical Education 2013;13(1) View
  309. Guiñazú M, Cortés V, Ibáñez C, Velásquez J. Employing online social networks in precision-medicine approach using information fusion predictive model to improve substance use surveillance: A lesson from Twitter and marijuana consumption. Information Fusion 2020;55:150 View
  310. Zheluk A, Quinn C, Meylakhs P. Internet Search and Krokodil in the Russian Federation: An Infoveillance Study. Journal of Medical Internet Research 2014;16(9):e212 View
  311. Chiu A, Lin Q, He D, Ghezzi P. News trends and web search query of HIV/AIDS in Hong Kong. PLOS ONE 2017;12(9):e0185004 View
  312. Pesälä S, Virtanen M, Sane J, Jousimaa J, Lyytikäinen O, Murtopuro S, Mustonen P, Kaila M, Helve O. Health Care Professionals’ Evidence-Based Medicine Internet Searches Closely Mimic the Known Seasonal Variation of Lyme Borreliosis: A Register-Based Study. JMIR Public Health and Surveillance 2017;3(2):e19 View
  313. Espina K, Estuar M. Infodemiology for Syndromic Surveillance of Dengue and Typhoid Fever in the Philippines. Procedia Computer Science 2017;121:554 View
  314. Brigo F, Trinka E. Google search behavior for status epilepticus. Epilepsy & Behavior 2015;49:146 View
  315. Radin M, Sciascia S. Infodemiology of systemic lupus erythematous using Google Trends. Lupus 2017;26(8):886 View
  316. Eriksson M. On-line Strategic Crisis Communication: In Search of a Descriptive Model Approach. International Journal of Strategic Communication 2012;6(4):309 View
  317. Johansen M, Berntsen G, Shrestha N, Bellika J, Johnsen J. An Exploratory Study of Patient Attitudes towards Symptom Reporting in a Primary Care Setting. Methods of Information in Medicine 2011;50(05):479 View
  318. Daniulaityte R, Chen L, Lamy F, Carlson R, Thirunarayan K, Sheth A. “When ‘Bad’ is ‘Good’”: Identifying Personal Communication and Sentiment in Drug-Related Tweets. JMIR Public Health and Surveillance 2016;2(2):e162 View
  319. Wu S, Raghupathi W. A Panel Analysis of the Strategic Association Between Information and Communication Technology and Public Health Delivery. Journal of Medical Internet Research 2012;14(5):e147 View
  320. Meidani Z, Sadoughi F, Ahmadi M, Maleki M, Zohoor A, Saddik B. National Health Information Infrastructure Model: A Milestone for Health Information Management Education Realignment. Telemedicine and e-Health 2012;18(6):475 View
  321. Mahroum N, Adawi M, Sharif K, Waknin R, Mahagna H, Bisharat B, Mahamid M, Abu-Much A, Amital H, Luigi Bragazzi N, Watad A, Manogaran G. Public reaction to Chikungunya outbreaks in Italy—Insights from an extensive novel data streams-based structural equation modeling analysis. PLOS ONE 2018;13(5):e0197337 View
  322. Lau A, Kwok T, Coiera E. How Online Crowds Influence the Way Individual Consumers Answer Health Questions. Applied Clinical Informatics 2011;02(02):177 View
  323. Choi J, Cho Y, Shim E, Woo H. Web-based infectious disease surveillance systems and public health perspectives: a systematic review. BMC Public Health 2016;16(1) View
  324. Romero-Alvarez D, Parikh N, Osthus D, Martinez K, Generous N, del Valle S, Manore C. Google Health Trends performance reflecting dengue incidence for the Brazilian states. BMC Infectious Diseases 2020;20(1) View
  325. Kamiński M, Borger M, Prymas P, Muth A, Stachowski A, Łoniewski I, Marlicz W. Analysis of Answers to Queries among Anonymous Users with Gastroenterological Problems on an Internet Forum. International Journal of Environmental Research and Public Health 2020;17(3):1042 View
  326. Wang H, Chen D. Economic Recession and Obesity-Related Internet Search Behavior in Taiwan: Analysis of Google Trends Data. JMIR Public Health and Surveillance 2018;4(2):e37 View
  327. Blouin-Genest G, Miller A. The politics of participatory epidemiology: Technologies, social media and influenza surveillance in the US. Health Policy and Technology 2017;6(2):192 View
  328. Huang M, ElTayeby O, Zolnoori M, Yao L. Public Opinions Toward Diseases: Infodemiological Study on News Media Data. Journal of Medical Internet Research 2018;20(5):e10047 View
  329. BAYIN DONAR G. Digital epidemiology. Türkiye Halk Sağlığı Dergisi 2020;18(2):192 View
  330. Brigo F, Lochner P, Tezzon F, Nardone R. Web search behavior for multiple sclerosis: An infodemiological study. Multiple Sclerosis and Related Disorders 2014;3(4):440 View
  331. Oh H, Kim C, Jeon J. Public Sense of Water Fluoridation as Reflected on Twitter 2009–2017. Journal of Dental Research 2020;99(1):11 View
  332. Albalawi Y, Sixsmith J. Agenda Setting for Health Promotion: Exploring an Adapted Model for the Social Media Era. JMIR Public Health and Surveillance 2015;1(2):e21 View
  333. Rovetta A, Bhagavathula A. COVID-19-Related Web Search Behaviors and Infodemic Attitudes in Italy: Infodemiological Study. JMIR Public Health and Surveillance 2020;6(2):e19374 View
  334. Metcalfe D, Price C, Powell J. Media coverage and public reaction to a celebrity cancer diagnosis. Journal of Public Health 2011;33(1):80 View
  335. Bhattacharya S, Srinivasan P, Polgreen P, Sullivan P. Engagement with Health Agencies on Twitter. PLoS ONE 2014;9(11):e112235 View
  336. Chen B, Shao J, Liu K, Cai G, Jiang Z, Huang Y, Gu H, Jiang J. Does Eating Chicken Feet With Pickled Peppers Cause Avian Influenza? Observational Case Study on Chinese Social Media During the Avian Influenza A (H7N9) Outbreak. JMIR Public Health and Surveillance 2018;4(1):e32 View
  337. Harris J, Moreland-Russell S, Tabak R, Ruhr L, Maier R. Communication About Childhood Obesity on Twitter. American Journal of Public Health 2014;104(7):e62 View
  338. Tozzi A, Gesualdo F, D’Ambrosio A, Pandolfi E, Agricola E, Lopalco P. Can Digital Tools Be Used for Improving Immunization Programs?. Frontiers in Public Health 2016;4 View
  339. Naja W, Kansoun A, Haddad R. Prevalence of Depression in Medical Students at the Lebanese University and Exploring its Correlation With Facebook Relevance: A Questionnaire Study. JMIR Research Protocols 2016;5(2):e96 View
  340. Aguilar-Gallegos N, Romero-García L, Martínez-González E, García-Sánchez E, Aguilar-Ávila J. Dataset on dynamics of Coronavirus on Twitter. Data in Brief 2020;30:105684 View
  341. Adawi M, Bragazzi N, Watad A, Sharif K, Amital H, Mahroum N. Discrepancies Between Classic and Digital Epidemiology in Searching for the Mayaro Virus: Preliminary Qualitative and Quantitative Analysis of Google Trends. JMIR Public Health and Surveillance 2017;3(4):e93 View
  342. Moccia M, Brigo F, Tedeschi G, Bonavita S, Lavorgna L. Neurology and the Internet: a review. Neurological Sciences 2018;39(6):981 View
  343. Visweswaran S, Colditz J, O’Halloran P, Han N, Taneja S, Welling J, Chu K, Sidani J, Primack B. Machine Learning Classifiers for Twitter Surveillance of Vaping: Comparative Machine Learning Study. Journal of Medical Internet Research 2020;22(8):e17478 View
  344. Pesälä S, Virtanen M, Sane J, Mustonen P, Kaila M, Helve O. Health Information–Seeking Patterns of the General Public and Indications for Disease Surveillance: Register-Based Study Using Lyme Disease. JMIR Public Health and Surveillance 2017;3(4):e86 View
  345. Koschack J, Weibezahl L, Friede T, Himmel W, Makedonski P, Grabowski J. Scientific Versus Experiential Evidence: Discourse Analysis of the Chronic Cerebrospinal Venous Insufficiency Debate in a Multiple Sclerosis Forum. Journal of Medical Internet Research 2015;17(7):e159 View
  346. D'Haeseleer M, Eelen P, Sadeghi N, D'Hooghe M, Van Schependom J, Nagels G. Feasibility of Real Time Internet-Based Teleconsultation in Patients With Multiple Sclerosis: Interventional Pilot Study. Journal of Medical Internet Research 2020;22(8):e18178 View
  347. Kim S, Pinkerton T, Ganesh N. Assessment of H1N1 questions and answers posted on the Web. American Journal of Infection Control 2012;40(3):211 View
  348. Hesse B, O'Connell M, Augustson E, Chou W, Shaikh A, Finney Rutten L. Realizing the Promise of Web 2.0: Engaging Community Intelligence. Journal of Health Communication 2011;16(sup1):10 View
  349. Mao C, Wu X, Fu X, Di M, Yu Y, Yuan J, Yang Z, Tang J. An Internet-Based Epidemiological Investigation of the Outbreak of H7N9 Avian Influenza A in China Since Early 2013. Journal of Medical Internet Research 2014;16(9):e221 View
  350. Madden K, Feldman B. Weekly, Seasonal, and Geographic Patterns in Health Contemplations About Sundown Syndrome: An Ecological Correlational Study. JMIR Aging 2019;2(1):e13302 View
  351. Cain J, Romanelli F, Fox B. Pharmacy, social media, and health: Opportunity for impact. Journal of the American Pharmacists Association 2010;50(6):745 View
  352. Mittelstadt B, Benzler J, Engelmann L, Prainsack B, Vayena E. Is there a duty to participate in digital epidemiology?. Life Sciences, Society and Policy 2018;14(1) View
  353. Kong G, LaVallee H, Rams A, Ramamurthi D, Krishnan-Sarin S. Promotion of Vape Tricks on YouTube: Content Analysis. Journal of Medical Internet Research 2019;21(6):e12709 View
  354. Lucivero F, Hallowell N, Johnson S, Prainsack B, Samuel G, Sharon T. COVID-19 and Contact Tracing Apps: Ethical Challenges for a Social Experiment on a Global Scale. Journal of Bioethical Inquiry 2020;17(4):835 View
  355. Eduardo Roncancio G. Ayudas desde la red para el control de la epidemia. Infectio 2009;13(3):217 View
  356. Santos J, Matos S. Analysing Twitter and web queries for flu trend prediction. Theoretical Biology and Medical Modelling 2014;11(S1) View
  357. Cole-Lewis H, Varghese A, Sanders A, Schwarz M, Pugatch J, Augustson E. Assessing Electronic Cigarette-Related Tweets for Sentiment and Content Using Supervised Machine Learning. Journal of Medical Internet Research 2015;17(8):e208 View
  358. Husnayain A, Shim E, Fuad A, Su E. Understanding the Community Risk Perceptions of the COVID-19 Outbreak in South Korea: Infodemiology Study. Journal of Medical Internet Research 2020;22(9):e19788 View
  359. Cuomo R, Purushothaman V, Li J, Cai M, Mackey T, Oladimeji O. Sub-national longitudinal and geospatial analysis of COVID-19 tweets. PLOS ONE 2020;15(10):e0241330 View
  360. Dzaye O, Adelhoefer S, Boakye E, Blaha M. Cardiovascular-related health behaviors and lifestyle during the COVID-19 pandemic: An infodemiology study. American Journal of Preventive Cardiology 2021;5:100148 View
  361. Mavragani A, Gkillas K. COVID-19 predictability in the United States using Google Trends time series. Scientific Reports 2020;10(1) View
  362. Gao Y, Xie Z, Sun L, Xu C, Li D. Electronic Cigarette–Related Contents on Instagram: Observational Study and Exploratory Analysis. JMIR Public Health and Surveillance 2020;6(4):e21963 View
  363. Xue J, Chen J, Chen C, Hu R, Zhu T. The Hidden Pandemic of Family Violence During COVID-19: Unsupervised Learning of Tweets. Journal of Medical Internet Research 2020;22(11):e24361 View
  364. Kardeş S, Kuzu A, Pakhchanian H, Raiker R, Karagülle M. Population-level interest in anti-rheumatic drugs in the COVID-19 era: insights from Google Trends. Clinical Rheumatology 2021;40(5):2047 View
  365. Hernández-García I, Giménez-Júlvez T. Information in Spanish on the Internet about the Prevention of COVID-19. International Journal of Environmental Research and Public Health 2020;17(21):8228 View
  366. Chen S, Zhou L, Song Y, Xu Q, Wang P, Wang K, Ge Y, Janies D. A Novel Machine Learning Framework for Comparison of Viral COVID-19–Related Sina Weibo and Twitter Posts: Workflow Development and Content Analysis. Journal of Medical Internet Research 2021;23(1):e24889 View
  367. Kardeş S. Public interest in spa therapy during the COVID-19 pandemic: analysis of Google Trends data among Turkey. International Journal of Biometeorology 2021;65(6):945 View
  368. Kurian S, Bhatti A, Alvi M, Ting H, Storlie C, Wilson P, Shah N, Liu H, Bydon M. Correlations Between COVID-19 Cases and Google Trends Data in the United States: A State-by-State Analysis. Mayo Clinic Proceedings 2020;95(11):2370 View
  369. Zheluk A, Maddock J. Plausibility of Using a Checklist With YouTube to Facilitate the Discovery of Acute Low Back Pain Self-Management Content: Exploratory Study. JMIR Formative Research 2020;4(11):e23366 View
  370. Gallotti R, Valle F, Castaldo N, Sacco P, De Domenico M. Assessing the risks of ‘infodemics’ in response to COVID-19 epidemics. Nature Human Behaviour 2020;4(12):1285 View
  371. Muddasani S, Fleischer A. Prediction of ambulatory visits for itching diseases using Google Trends data. Itch 2021;6(1):e45 View
  372. de Souza T, de Almeida Medeiros A, Barbosa I, de Vasconcelos Torres G. Digital technologies for monitoring infected people, identifying contacts and tracking transmission chains in the corona virus disease 2019 pandemic. Medicine 2020;99(51):e23744 View
  373. Leis A, Ronzano F, Mayer M, Furlong L, Sanz F. Evaluating Behavioral and Linguistic Changes During Drug Treatment for Depression Using Tweets in Spanish: Pairwise Comparison Study. Journal of Medical Internet Research 2020;22(12):e20920 View
  374. Schnoell J, Besser G, Jank B, Bartosik T, Parzefall T, Riss D, Mueller C, Liu D. The association between COVID-19 cases and deaths and web-based public inquiries. Infectious Diseases 2021;53(3):176 View
  375. Scheerer C, Rüth M, Tizek L, Köberle M, Biedermann T, Zink A. Googling for Ticks and Borreliosis in Germany: Nationwide Google Search Analysis From 2015 to 2018. Journal of Medical Internet Research 2020;22(10):e18581 View
  376. Nsoesie E, Cesare N, Müller M, Ozonoff A. COVID-19 Misinformation Spread in Eight Countries: Exponential Growth Modeling Study. Journal of Medical Internet Research 2020;22(12):e24425 View
  377. Diepen C, Wolf A. "Care is not care if it isn't person‐centred": A content analysis of how Person‐Centred Care is expressed on Twitter. Health Expectations 2021;24(2):548 View
  378. Ayers J, Althouse B, Poliak A, Leas E, Nobles A, Dredze M, Smith D. Quantifying Public Interest in Police Reforms by Mining Internet Search Data Following George Floyd’s Death. Journal of Medical Internet Research 2020;22(10):e22574 View
  379. Park Y. A socio-technological model of search information divide in US cities. Aslib Journal of Information Management 2020;73(2):144 View
  380. Lee A, Mmonu N, Thomas H, Rios N, Enriquez A, Breyer B. Qualitative analysis of Amazon customer reviews of penile clamps for male urinary incontinence. Neurourology and Urodynamics 2021;40(1):384 View
  381. Mayo-Yáñez M, Calvo‑Henríquez C, Chiesa-Estomba C, Lechien J, González-Torres L. Google Trends application for the study of information search behaviour on oropharyngeal cancer in Spain. European Archives of Oto-Rhino-Laryngology 2021;278(7):2569 View
  382. Wong M, Gunasekeran D, Nusinovici S, Sabanayagam C, Yeo K, Cheng C, Tham Y. Telehealth Demand Trends During the COVID-19 Pandemic in the Top 50 Most Affected Countries: Infodemiological Evaluation. JMIR Public Health and Surveillance 2021;7(2):e24445 View
  383. Geronikolou S, Chrousos G. COVID-19–Induced Fear in Infoveillance Studies: Pilot Meta-analysis Study of Preliminary Results. JMIR Formative Research 2021;5(2):e21156 View
  384. Li Y, Zeng Y, Liu G, Lu D, Yang H, Ying Z, Hu Y, Qiu J, Zhang C, Fall K, Fang F, Valdimarsdóttir U, Zhang W, Song H. Public awareness, emotional reactions and human mobility in response to the COVID-19 outbreak in China – a population-based ecological study. Psychological Medicine 2020:1 View
  385. Sulyok M, Ferenci T, Walker M. Google Trends Data and COVID‐19 in Europe: Correlations and model enhancement are European wide. Transboundary and Emerging Diseases 2021;68(4):2610 View
  386. Muselli M, Cofini V, Desideri G, Necozione S. Coronavirus (Covid-19) pandemic: How may communication strategies influence our behaviours?. International Journal of Disaster Risk Reduction 2021;53:101982 View
  387. Lin C. A Year like No Other: A Call to Curb the Infodemic and Depoliticize a Pandemic Crisis. Journal of Broadcasting & Electronic Media 2020;64(5):661 View
  388. Xu Q, Shen Z, Shah N, Cuomo R, Cai M, Brown M, Li J, Mackey T. Characterizing Weibo Social Media Posts From Wuhan, China During the Early Stages of the COVID-19 Pandemic: Qualitative Content Analysis. JMIR Public Health and Surveillance 2020;6(4):e24125 View
  389. Hu Z, Yang Z, Li Q, Zhang A. The COVID-19 Infodemic: Infodemiology Study Analyzing Stigmatizing Search Terms. Journal of Medical Internet Research 2020;22(11):e22639 View
  390. Álvarez-Mon M, Rodríguez-Quiroga A, de Anta L, Quintero J. Aplicaciones médicas de las redes sociales. Aspectos específicos de la pandemia de la COVID-19. Medicine - Programa de Formación Médica Continuada Acreditado 2020;13(23):1305 View
  391. Kardeş S, Kuzu A, Raiker R, Pakhchanian H, Karagülle M. Public interest in rheumatic diseases and rheumatologist in the United States during the COVID-19 pandemic: evidence from Google Trends. Rheumatology International 2021;41(2):329 View
  392. Hernández-García I, Giménez-Júlvez T. YouTube as a Source of Influenza Vaccine Information in Spanish. International Journal of Environmental Research and Public Health 2021;18(2):727 View
  393. Hockenhull J, Black J, Bletz A, Margolin Z, Olson R, Wood D, Dart R, Dargan P. An evaluation of online discussion relating to nonmedical use of prescription opioids within the UK. British Journal of Clinical Pharmacology 2021;87(4):1637 View
  394. Lam T, Spitz M, Schully S, Khoury M. “Drivers” of Translational Cancer Epidemiology in the 21st Century: Needs and Opportunities. Cancer Epidemiology Biomarkers & Prevention 2013;22(2):181 View
  395. Kaufman M, Bazell A, Collaco A, Sedoc J. “This show hits really close to home on so many levels”: An analysis of Reddit comments about HBO’s Euphoria to understand viewers’ experiences of and reactions to substance use and mental illness. Drug and Alcohol Dependence 2021;220:108468 View
  396. Adelhoefer S, Henry T, Blankstein R, Graham G, Blaha M, Dzaye O. Declining interest in clinical imaging during the COVID-19 pandemic: An analysis of Google Trends data. Clinical Imaging 2021;73:20 View
  397. Balsamo D, Bajardi P, Salomone A, Schifanella R. Patterns of Routes of Administration and Drug Tampering for Nonmedical Opioid Consumption: Data Mining and Content Analysis of Reddit Discussions. Journal of Medical Internet Research 2021;23(1):e21212 View
  398. Asamoah D, Sharda R. What should I believe? Exploring information validity on social network platforms. Journal of Business Research 2021;122:567 View
  399. Greenspan R, Loftus E. Pandemics and infodemics: Research on the effects of misinformation on memory. Human Behavior and Emerging Technologies 2021;3(1):8 View
  400. Singh T, Roberts K, Cohen T, Cobb N, Wang J, Fujimoto K, Myneni S. Social Media as a Research Tool (SMaaRT) for Risky Behavior Analytics: Methodological Review. JMIR Public Health and Surveillance 2020;6(4):e21660 View
  401. Rodríguez-González A, Tuñas J, Prieto Santamaría L, Fernández Peces-Barba D, Menasalvas Ruiz E, Jaramillo A, Cotarelo M, Conejo Fernández A, Arce A, Gil A. Identifying Polarity in Tweets from an Imbalanced Dataset about Diseases and Vaccines Using a Meta-Model Based on Machine Learning Techniques. Applied Sciences 2020;10(24):9019 View
  402. Sousa-Pinto B, Heffler E, Antó A, Czarlewski W, Bedbrook A, Gemicioglu B, Canonica G, Antó J, Fonseca J, Bousquet J. Anomalous asthma and chronic obstructive pulmonary disease Google Trends patterns during the COVID-19 pandemic. Clinical and Translational Allergy 2020;10(1) View
  403. Rovetta A, Castaldo L. The Impact of COVID-19 on Italian Web Users: A Quantitative Analysis of Regional Hygiene Interest and Emotional Response. Cureus 2020 View
  404. Saposnik F, Huber J. Trends in Web Searches About the Causes and Treatments of Autism Over the Past 15 Years: Exploratory Infodemiology Study. JMIR Pediatrics and Parenting 2020;3(2):e20913 View
  405. Benis A, Tamburis O, Chronaki C, Moen A. One Digital Health: A Unified Framework for Future Health Ecosystems. Journal of Medical Internet Research 2021;23(2):e22189 View
  406. Zanville N, Cohen B, Gray T, Phillips J, Linder L, Starkweather A, Yeager K, Cooley M. The Oncology Nursing Society Rapid Review and Research Priorities for Cancer Care in the Context of COVID-19. Oncology Nursing Forum 2021;48(2):131 View
  407. Chapman G, Ishlek I, Spoors J. Google search behaviour relating to perinatal mental wellbeing during the United Kingdom’s first COVID-19 lockdown period: a warning for future restrictions. Archives of Women's Mental Health 2021;24(4):681 View
  408. Mirza E, Mirza G, Belviranli S, Oltulu R, Okka M. Ocular-symptoms-related Google Search Trends during the COVID-19 Pandemic in Europe. International Ophthalmology 2021;41(6):2213 View
  409. Hönings H, Knapp D, Nguyễn B, Richter D, Williams K, Dorsch I, Fietkiewicz K. Health information diffusion on Twitter: The content and design of WHO tweets matter. Health Information & Libraries Journal 2021 View
  410. Prieto Santamaría L, Tuñas J, Fernández Peces-Barba D, Jaramillo A, Cotarelo M, Menasalvas E, Conejo Fernández A, Arce A, Gil de Miguel A, Rodríguez González A. Influenza and Measles-MMR: two case study of the trend and impact of vaccine-related Twitter posts in Spanish during 2015-2018. Human Vaccines & Immunotherapeutics 2021:1 View
  411. Lampos V, Majumder M, Yom-Tov E, Edelstein M, Moura S, Hamada Y, Rangaka M, McKendry R, Cox I. Tracking COVID-19 using online search. npj Digital Medicine 2021;4(1) View
  412. Bour C, Ahne A, Schmitz S, Perchoux C, Dessenne C, Fagherazzi G. The Use of Social Media for Health Research Purposes: Scoping Review. Journal of Medical Internet Research 2021;23(5):e25736 View
  413. Crampton A, Pearce N, Ragusa A, Dick Haynes R. Using Infoveillance to Identify Community Concerns/Literacy, Reduce Risk, and Improve Response in Pollution and Health Emergencies. E3S Web of Conferences 2021;241:03002 View
  414. Rutovic S, Fumagalli A, Lutsenko I, Corea F. Public Interest in Neurological Diseases on Wikipedia during Coronavirus Disease (COVID-19) Pandemic. Neurology International 2021;13(1):59 View
  415. Liu W, Wei Z, Cheng X, Pang R, Zhang H, Li G. Public Interest in Cosmetic Surgical and Minimally Invasive Plastic Procedures During the COVID-19 Pandemic: Infodemiology Study of Twitter Data. Journal of Medical Internet Research 2021;23(3):e23970 View
  416. Reuter K, Lee D. Perspectives Toward Seeking Treatment Among Patients With Psoriasis: Protocol for a Twitter Content Analysis. JMIR Research Protocols 2021;10(2):e13731 View
  417. Huynh Dagher S, Lamé G, Hubiche T, Ezzedine K, Duong T. The Influence of Media Coverage and Governmental Policies on Google Queries Related to COVID-19 Cutaneous Symptoms: Infodemiology Study. JMIR Public Health and Surveillance 2021;7(2):e25651 View
  418. Garett R, Young S. Digital Public Health Surveillance Tools for Alcohol Use and HIV Risk Behaviors. AIDS and Behavior 2021 View
  419. Bour C, Schmitz S, Ahne A, Perchoux C, Dessenne C, Fagherazzi G. Scoping review protocol on the use of social media for health research purposes. BMJ Open 2021;11(2):e040671 View
  420. Dixon B, Mukherjee S, Wiensch A, Gray M, Ferres J, Grannis S. Capturing COVID-19–Like Symptoms at Scale Using Banner Ads on an Online News Platform: Pilot Survey Study. Journal of Medical Internet Research 2021;23(5):e24742 View
  421. Goadsby P, Lantéri-Minet M, Michel M, Peres M, Shibata M, Straube A, Wijeratne T, Ebel-Bitoun C, Constantin L, Hitier S. 21st century headache: mapping new territory. The Journal of Headache and Pain 2021;22(1) View
  422. Pulido-Polo M, Hernández-Santaolalla V, Lozano-González A. Uso institucional de Twitter para combatir la infodemia causada por la crisis sanitaria de la Covid-19. El profesional de la información 2021 View
  423. Dzaye O, Berning P, Adelhoefer S, Duebgen M, Blankstein R, Mahesh M, Nasir K, Blumenthal R, Mortensen M, Blaha M. Temporal Trends and Interest in Coronary Artery Calcium Scoring Over Time: An Infodemiology Study. Mayo Clinic Proceedings: Innovations, Quality & Outcomes 2021;5(2):456 View
  424. Arseneau M, Backonja U, Litchman M, Karimanfard R, Sheng X, Taylor-Swanson L. #Menopause on Instagram: a mixed-methods study. Menopause 2021;28(4):391 View
  425. Ciaffi J, Meliconi R, Landini M, Mancarella L, Brusi V, Faldini C, Ursini F. Seasonality of Back Pain in Italy: An Infodemiology Study. International Journal of Environmental Research and Public Health 2021;18(3):1325 View
  426. Blouin Genest G, Sherrod R. Géographie virale des risques globaux : la circulation des risques sanitaires dans le contexte de la gouvernance globale de la santé. Revue francophone sur la santé et les territoires 2019 View
  427. GOULBOURNE T, YANOVITZKY I. The Communication Infrastructure as a Social Determinant of Health: Implications for Health Policymaking and Practice. The Milbank Quarterly 2021;99(1):24 View
  428. Cuomo R, Purushothaman V, Li J, Bardier C, Nali M, Shah N, Obradovich N, Yang J, Mackey T. Characterizing Self-Reported Tobacco, Vaping, and Marijuana-Related Tweets Geolocated for California College Campuses. Frontiers in Public Health 2021;9 View
  429. Reuter K, Deodhar A, Makri S, Zimmer M, Berenbaum F, Nikiphorou E. The impact of the COVID-19 pandemic on people with rheumatic and musculoskeletal diseases: insights from patient-generated data on social media. Rheumatology 2021 View
  430. Liu S, Perdew M, Lithopoulos A, Rhodes R. The Feasibility of Using Instagram Data to Predict Exercise Identity and Physical Activity Levels: Cross-sectional Observational Study. Journal of Medical Internet Research 2021;23(4):e20954 View
  431. Khan I, Saleh M, Quazi A, Johns R. Health consumers’ social media adoption behaviours in Australia. Health Informatics Journal 2021;27(2):146045822110099 View
  432. Murayama T, Shimizu N, Fujita S, Wakamiya S, Aramaki E, Wen T. Predicting regional influenza epidemics with uncertainty estimation using commuting data in Japan. PLOS ONE 2021;16(4):e0250417 View
  433. Szilagyi I, Ullrich T, Lang-Illievich K, Klivinyi C, Schittek G, Simonis H, Bornemann-Cimenti H. Google Trends for Pain Search Terms in the World’s Most Populated Regions Before and After the First Recorded COVID-19 Case: Infodemiological Study. Journal of Medical Internet Research 2021;23(4):e27214 View
  434. Cuomo R, Purushothaman V, Li J, Cai M, Mackey T. A longitudinal and geospatial analysis of COVID-19 tweets during the early outbreak period in the United States. BMC Public Health 2021;21(1) View
  435. Schück S, Roustamal A, Gedik A, Voillot P, Foulquié P, Penfornis C, Job B. Assessing Patient Perceptions and Experiences of Paracetamol in France: Infodemiology Study Using Social Media Data Mining. Journal of Medical Internet Research 2021;23(7):e25049 View
  436. Fiks A, Nekrasova E, Hambidge S. Health Systems as a Catalyst for Immunization Delivery. Academic Pediatrics 2021;21(4):S40 View
  437. Mangono T, Smittenaar P, Caplan Y, Huang V, Sutermaster S, Kemp H, Sgaier S. Information-Seeking Patterns During the COVID-19 Pandemic Across the United States: Longitudinal Analysis of Google Trends Data. Journal of Medical Internet Research 2021;23(5):e22933 View
  438. Wei S, Ma M, Wu C, Yu B, Jiang L, Wen X, Fu F, Shi M. Using Search Trends to Analyze Web-Based Interest in Lower Urinary Tract Symptoms-Related Inquiries, Diagnoses, and Treatments in Mainland China: Infodemiology Study of Baidu Index Data. Journal of Medical Internet Research 2021;23(7):e27029 View
  439. Srikanth N, Rana R, Singhal R, Jameela S, Singh R, Khanduri S, Tripathi A, Goel S, Chhatre L, Chandra A, Rao B, Dhiman K. Mobile App–Reported Use of Traditional Medicine for Maintenance of Health in India During the COVID-19 Pandemic: Cross-sectional Questionnaire Study. JMIRx Med 2021;2(2):e25703 View
  440. Bunyan A, Venuturupalli S, Reuter K. Expressed Symptoms and Attitudes Toward Using Twitter for Health Care Engagement Among Patients With Lupus on Social Media: Protocol for a Mixed Methods Study. JMIR Research Protocols 2021;10(5):e15716 View
  441. Ho J, Hussain S, Sparagano O. Did the COVID-19 Pandemic Spark a Public Interest in Pet Adoption?. Frontiers in Veterinary Science 2021;8 View
  442. EL Azzaoui A, Singh S, Park J. SNS Big Data Analysis Framework for COVID-19 Outbreak Prediction in Smart Healthy City. Sustainable Cities and Society 2021;71:102993 View
  443. Chen J, Wang Y. Social Media Use for Health Purposes: Systematic Review. Journal of Medical Internet Research 2021;23(5):e17917 View
  444. Zielinski C. Infodemics and infodemiology: a short history, a long future. Revista Panamericana de Salud Pública 2021;45:1 View
  445. Khamisy-Farah R, Furstenau L, Kong J, Wu J, Bragazzi N. Gynecology Meets Big Data in the Disruptive Innovation Medical Era: State-of-Art and Future Prospects. International Journal of Environmental Research and Public Health 2021;18(10):5058 View
  446. Ho Y, Tai Y, Chen L. COVID-19 Pandemic Analysis for a Country’s Ability to Control the Outbreak Using Little’s Law: Infodemiology Approach. Sustainability 2021;13(10):5628 View
  447. La Bella E, Allen C, Lirussi F. Communication vs evidence: What hinders the outreach of science during an infodemic? A narrative review. Integrative Medicine Research 2021;10(4):100731 View
  448. Nguyen A, Trinh X, Wang S, Wu A. Determination of Patient Sentiment and Emotion in Ophthalmology: Infoveillance Tutorial on Web-Based Health Forum Discussions. Journal of Medical Internet Research 2021;23(5):e20803 View
  449. Jang B, Kim I, Kim J. Effective Training Data Extraction Method to Improve Influenza Outbreak Prediction from Online News Articles: Deep Learning Model Study. JMIR Medical Informatics 2021;9(5):e23305 View
  450. Shaklai S, Gilad-Bachrach R, Yom-Tov E, Stern N. Detecting Impending Stroke From Cognitive Traits Evident in Internet Searches: Analysis of Archival Data. Journal of Medical Internet Research 2021;23(5):e27084 View
  451. Reddy K, Mithani S, Wilson L, Wilson K. Canada’s response to international travel during COVID-19 pandemic – a media analysis. BMC Public Health 2021;21(1) View
  452. Rotter D, Doebler P, Schmitz F. Interests, Motives, and Psychological Burdens in Times of Crisis and Lockdown: Google Trends Analysis to Inform Policy Makers. Journal of Medical Internet Research 2021;23(6):e26385 View
  453. Purushothaman V, Li J, Mackey T. Detecting Suicide and Self-Harm Discussions Among Opioid Substance Users on Instagram Using Machine Learning. Frontiers in Psychiatry 2021;12 View
  454. Wang C, Shu X, Tao J, Zhang Y, Yuan Y, Wu C, Jakovljevic M. Seasonal Variation and Global Public Interest in the Internet Searches for Osteoporosis. BioMed Research International 2021;2021:1 View
  455. Stern J, Georgsson S, Carlsson T. Quality of web-based information at the beginning of a global pandemic: a cross-sectional infodemiology study investigating preventive measures and self care methods of the coronavirus disease 2019. BMC Public Health 2021;21(1) View
  456. Naik H, Johnson M, Johnson M. Internet Interest in Colon Cancer Following the Death of Chadwick Boseman: Infoveillance Study. Journal of Medical Internet Research 2021;23(6):e27052 View
  457. Alvarez-Mon M, de Anta L, Llavero-Valero M, Lahera G, Ortega M, Soutullo C, Quintero J, Asunsolo del Barco A, Alvarez-Mon M. Areas of Interest and Attitudes towards the Pharmacological Treatment of Attention Deficit Hyperactivity Disorder: Thematic and Quantitative Analysis Using Twitter. Journal of Clinical Medicine 2021;10(12):2668 View
  458. Miller M, Romine W, Oroszi T. Public Discussion of Anthrax on Twitter: Using Machine Learning to Identify Relevant Topics and Events. JMIR Public Health and Surveillance 2021;7(6):e27976 View
  459. Xu R, Brown P, Baxter N, Sawka A. Online Public Interest in Cancer During the COVID-19 Pandemic. JCO Clinical Cancer Informatics 2021;(5):695 View
  460. Perez J, Espiritu A, Jamora R. Google search behavior for meningitis and its vaccines: an infodemiological study. BMC Neurology 2021;21(1) View
  461. Bedson J, Skrip L, Pedi D, Abramowitz S, Carter S, Jalloh M, Funk S, Gobat N, Giles-Vernick T, Chowell G, de Almeida J, Elessawi R, Scarpino S, Hammond R, Briand S, Epstein J, Hébert-Dufresne L, Althouse B. A review and agenda for integrated disease models including social and behavioural factors. Nature Human Behaviour 2021;5(7):834 View
  462. Wei S, Ma M, Wen X, Wu C, Zhu G, Zhou X. Online Public Attention of Premature ejaculation in Mainland China: Infodemiology Study Based on Baidu Index (Preprint). Journal of Medical Internet Research 2021 View
  463. Wang P, Xu Q, Cao R, Deng F, Lei S. Global Public Interests and Dynamic Trends in Osteoporosis From 2004 to 2019: Infodemiology Study. Journal of Medical Internet Research 2021;23(7):e25422 View
  464. Springer S, Zieger M, Strzelecki A. The rise of infodemiology and infoveillance during COVID-19 crisis. One Health 2021;13:100288 View
  465. Sousa-Pinto B, Halonen J, Antó A, Jormanainen V, Czarlewski W, Bedbrook A, Papadopoulos N, Freitas A, Haahtela T, Antó J, Fonseca J, Bousquet J. Prediction of Asthma Hospitalizations for the Common Cold Using Google Trends: Infodemiology Study. Journal of Medical Internet Research 2021;23(7):e27044 View
  466. Gai N, So D, Siddiqui A, Steinberg B. Dissemination of Anesthesia Information During the Coronavirus Disease 2019 Pandemic Through Twitter: An Infodemiology Study. Anesthesia & Analgesia 2021;133(2):515 View
  467. Tozzi A, Gesualdo F, Urbani E, Sbenaglia A, Ascione R, Procopio N, Croci I, Rizzo C. Digital Surveillance Through an Online Decision Support Tool for COVID-19 Over One Year of the Pandemic in Italy: Observational Study. Journal of Medical Internet Research 2021;23(8):e29556 View
  468. Lee E, Bekalu M, McCloud R, Viswanath K. Toward an Extended Infodemiology Framework: Leveraging Social Media Data and Web Search Queries as Digital Pulse on Cancer Communication. Health Communication 2021:1 View
  469. Gao Z, Fujita S, Shimizu N, Liew K, Murayama T, Yada S, Wakamiya S, Aramaki E. Measuring Public Concern About COVID-19 in Japanese Internet Users Through Search Queries: Infodemiological Study. JMIR Public Health and Surveillance 2021;7(7):e29865 View
  470. Jong W, Liang O, Yang C. The Exchange of Informational Support in Online Health Communities at the Onset of the COVID-19 Pandemic: Content Analysis. JMIRx Med 2021;2(3):e27485 View
  471. Yu V, Lasco G, David C. Fear, mistrust, and vaccine hesitancy: Narratives of the dengue vaccine controversy in the Philippines. Vaccine 2021;39(35):4964 View
  472. Oto O, Kardeş S, Guller N, Safak S, Dirim A, Başhan Y, Demir E, Artan A, Yazıcı H, Turkmen A. Impact of the COVID-19 pandemic on interest in renal diseases. Environmental Science and Pollution Research 2021 View
  473. Alshahrani R, Babour A. An Infodemiology and Infoveillance Study on COVID-19: Analysis of Twitter and Google Trends. Sustainability 2021;13(15):8528 View
  474. Purnat T, Vacca P, Czerniak C, Ball S, Burzo S, Zecchin T, Wright A, Bezbaruah S, Tanggol F, Dubé È, Labbé F, Dionne M, Lamichhane J, Mahajan A, Briand S, Nguyen T. Infodemic Signal Detection During the COVID-19 Pandemic: Development of a Methodology for Identifying Potential Information Voids in Online Conversations. JMIR Infodemiology 2021;1(1):e30971 View
  475. Rovetta A. The Impact of COVID-19 on Conspiracy Hypotheses and Risk Perception in Italy: Infodemiological Survey Study Using Google Trends. JMIR Infodemiology 2021;1(1):e29929 View
  476. Kostkova P, Saigí-Rubió F, Eguia H, Borbolla D, Verschuuren M, Hamilton C, Azzopardi-Muscat N, Novillo-Ortiz D. Data and Digital Solutions to Support Surveillance Strategies in the Context of the COVID-19 Pandemic. Frontiers in Digital Health 2021;3 View
  477. Pian W, Chi J, Ma F. The causes, impacts and countermeasures of COVID-19 “Infodemic”: A systematic review using narrative synthesis. Information Processing & Management 2021;58(6):102713 View
  478. Luo C, Ji K, Tang Y, Du Z. Exploring the Expression Differences Between Professionals and Laypeople Toward the COVID-19 Vaccine: A Text Mining Approach (Preprint). Journal of Medical Internet Research 2021 View
  479. Huang Y, Xu X, Su S. Diverging from News Media: An Exploratory Study on the Changing Dynamics between Media and Public Attention on Cancer in China from 2011–2020. International Journal of Environmental Research and Public Health 2021;18(16):8577 View

Books/Policy Documents

  1. Wamba S, Akter S, Kang H, Bhattacharya M, Upal M. Social Media Marketing. View
  2. Kwanya T, Stilwell C, Underwood P. Library 3.0. View
  3. Herttua T, Jakob E, Nave S, Gupta R, Zylka M. Designing Networks for Innovation and Improvisation. View
  4. Evans J, Bhatt S, Sharma R. mHealth Innovation in Asia. View
  5. Greaves F, Rozenblum R. Key Advances in Clinical Informatics. View
  6. Chapman L, Tyson J. Concepts and Methods in Infectious Disease Surveillance. View
  7. García-Díaz J, Apolinario-Arzube O, Medina-Moreira J, Salavarria-Melo J, Lagos-Ortiz K, Luna-Aveiga H, Valencia-García R. Technologies and Innovation. View
  8. Optican A, Cavazos-Rehg P. Child and Adolescent Psychiatry and the Media. View
  9. Kim A, Murphy J, Richards A, Hansen H, Powell R, Haney C. Social Media, Sociality, and Survey Research. View
  10. Horvitz E, Mulligan D. Next-Generation Ethics. View
  11. Apolinario-Arzube Ó, Garcí­a-Dí­az J, Pinto S, Luna-Aveiga H, Medina-Moreira J, Gómez-Berbis J, Valencia-Garcia R, Estrade-Cabrera J. Applied Informatics and Cybernetics in Intelligent Systems. View
  12. French M, Mykhalovskiy E. Pandemics and Emerging Infectious Diseases. View
  13. Bere W, Camara G, Malo S, Despres S, Lo M, Ouaro S. Innovations and Interdisciplinary Solutions for Underserved Areas. View
  14. Samaras L, García-Barriocanal E, Sicilia M. Innovation in Health Informatics. View
  15. Gao R, Hao B, Li H, Gao Y, Zhu T. Brain and Health Informatics. View
  16. Grimm M, Lampert C, Wolf S. Handbuch der Gesundheitskommunikation. View
  17. Giabbanelli P, Adams J, Pillutla V. Social Computing and Social Media. View
  18. Pavlin J. Infectious Disease Surveillance. View
  19. Richiardi L, Pizzi C, Paolotti D. Handbook of Epidemiology. View
  20. Naaz S, Siddiqui F. Intelligent Systems for Healthcare Management and Delivery. View
  21. Ganasegeran K, Abdulrahman S. Human Behaviour Analysis Using Intelligent Systems. View
  22. . Veterinary Epidemiology. View
  23. Shadbolt N, O’Hara K, De Roure D, Hall W. The Theory and Practice of Social Machines. View
  24. Laaksonen C, Jalonen H, Paavola J. Safe and Secure Cities. View
  25. Kwanya T, Stilwell C, Underwood P. Library 3.0. View
  26. Grimm M, Lampert C, Wolf S. Handbuch Gesundheitskommunikation. View
  27. Gould A. Statistical Methods for Evaluating Safety in Medical Product Development. View
  28. Strecher V. Handbook of Behavioral Medicine. View
  29. Ning X. Theory and Practice of Business Intelligence in Healthcare. View
  30. Sevigny E, Fuleihan B. The Handbook of Drugs and Society. View
  31. Shadbolt N, O’Hara K, De Roure D, Hall W. The Theory and Practice of Social Machines. View
  32. Comstock R. Injury Research. View
  33. Sugiura L. Respectable Deviance and Purchasing Medicine Online. View
  34. Cartwright L. The International Encyclopedia of Media Studies. View
  35. Murphy J, Dean E, Hill C, Richards A. Health Survey Methods. View
  36. Buller D, Walkosz B, Gill Woodall W. Prevention of Substance Use. View
  37. Laranjo L. Participatory Health Through Social Media. View
  38. Nemutanzhela P, Iyamu T. Maximizing Healthcare Delivery and Management through Technology Integration. View
  39. Chang A. Disinformation in Open Online Media. View
  40. Apolinario-Arzube Ó, García-Díaz J, Luna-Aveiga H, Medina-Moreira J, Valencia-García R. Technologies and Innovation. View
  41. Soussan T, Trovati M. Data Science Advancements in Pandemic and Outbreak Management. View
  42. Clarke, A, Jeske, M, Mamo, and L, Shim J. The Wiley Blackwell Companion to Medical Sociology. View
  43. Ning X. Research Anthology on Decision Support Systems and Decision Management in Healthcare, Business, and Engineering. View