Published on in Vol 25 (2023)

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/45233, first published .
Challenges in Using mHealth Data From Smartphones and Wearable Devices to Predict Depression Symptom Severity: Retrospective Analysis

Challenges in Using mHealth Data From Smartphones and Wearable Devices to Predict Depression Symptom Severity: Retrospective Analysis

Challenges in Using mHealth Data From Smartphones and Wearable Devices to Predict Depression Symptom Severity: Retrospective Analysis

Journals

  1. Leaning I, Ikani N, Savage H, Leow A, Beckmann C, Ruhé H, Marquand A. From smartphone data to clinically relevant predictions: A systematic review of digital phenotyping methods in depression. Neuroscience & Biobehavioral Reviews 2024;158:105541 View
  2. Zhang Y, Folarin A, Sun S, Cummins N, Ranjan Y, Rashid Z, Stewart C, Conde P, Sankesara H, Laiou P, Matcham F, White K, Oetzmann C, Lamers F, Siddi S, Simblett S, Vairavan S, Myin-Germeys I, Mohr D, Wykes T, Haro J, Annas P, Penninx B, Narayan V, Hotopf M, Dobson R. Longitudinal Assessment of Seasonal Impacts and Depression Associations on Circadian Rhythm Using Multimodal Wearable Sensing: Retrospective Analysis. Journal of Medical Internet Research 2024;26:e55302 View
  3. Mullick T, Shaaban S, Radovic A, Doryab A. Framework for Ranking Machine Learning Predictions of Limited, Multimodal, and Longitudinal Behavioral Passive Sensing Data: Combining User-Agnostic and Personalized Modeling. JMIR AI 2024;3:e47805 View
  4. Wang W, Chen J, Hu Y, Liu H, Chen J, Gadekallu T, Garg L, Guizani M, Hu X. Integration of Artificial Intelligence and Wearable Internet of Things for Mental Health Detection. International Journal of Cognitive Computing in Engineering 2024;5:307 View
  5. Langener A, Siepe B, Elsherif M, Niemeijer K, Andresen P, Akre S, Bringmann L, Cohen Z, Choukas N, Drexl K, Fassi L, Green J, Hoffmann T, Jagesar R, Kas M, Kurten S, Schoedel R, Stulp G, Turner G, Jacobson N. A template and tutorial for preregistering studies using passive smartphone measures. Behavior Research Methods 2024;56(8):8289 View
  6. Guo Q, Liu M, Li Y, Sun Q. Overcoming technical hurdles in mobile health: insights from the Fit2ThriveMB breast cancer study. Breast Cancer Research and Treatment 2024;208(2):467 View

Books/Policy Documents

  1. Perna G, Spiti A, Torti T, Daccò S, Caldirola D. Recent Advances and Challenges in the Treatment of Major Depressive Disorder. View