Published on in Vol 25 (2023)

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/45233, first published .
Challenges in Using mHealth Data From Smartphones and Wearable Devices to Predict Depression Symptom Severity: Retrospective Analysis

Challenges in Using mHealth Data From Smartphones and Wearable Devices to Predict Depression Symptom Severity: Retrospective Analysis

Challenges in Using mHealth Data From Smartphones and Wearable Devices to Predict Depression Symptom Severity: Retrospective Analysis

Journals

  1. Leaning I, Ikani N, Savage H, Leow A, Beckmann C, Ruhé H, Marquand A. From smartphone data to clinically relevant predictions: A systematic review of digital phenotyping methods in depression. Neuroscience & Biobehavioral Reviews 2024;158:105541 View
  2. Zhang Y, Folarin A, Sun S, Cummins N, Ranjan Y, Rashid Z, Stewart C, Conde P, Sankesara H, Laiou P, Matcham F, White K, Oetzmann C, Lamers F, Siddi S, Simblett S, Vairavan S, Myin-Germeys I, Mohr D, Wykes T, Haro J, Annas P, Penninx B, Narayan V, Hotopf M, Dobson R. Longitudinal Assessment of Seasonal Impacts and Depression Associations on Circadian Rhythm Using Multimodal Wearable Sensing: Retrospective Analysis. Journal of Medical Internet Research 2024;26:e55302 View
  3. Mullick T, Shaaban S, Radovic A, Doryab A. Framework for Ranking Machine Learning Predictions of Limited, Multimodal, and Longitudinal Behavioral Passive Sensing Data: Combining User-Agnostic and Personalized Modeling. JMIR AI 2024;3:e47805 View
  4. Wang W, Chen J, Hu Y, Liu H, Chen J, Gadekallu T, Garg L, Guizani M, Hu X. Integration of Artificial Intelligence and Wearable Internet of Things for Mental Health Detection. International Journal of Cognitive Computing in Engineering 2024;5:307 View
  5. Langener A, Siepe B, Elsherif M, Niemeijer K, Andresen P, Akre S, Bringmann L, Cohen Z, Choukas N, Drexl K, Fassi L, Green J, Hoffmann T, Jagesar R, Kas M, Kurten S, Schoedel R, Stulp G, Turner G, Jacobson N. A template and tutorial for preregistering studies using passive smartphone measures. Behavior Research Methods 2024;56(8):8289 View
  6. Guo Q, Liu M, Li Y, Sun Q. Overcoming technical hurdles in mobile health: insights from the Fit2ThriveMB breast cancer study. Breast Cancer Research and Treatment 2024;208(2):467 View
  7. Lim D, Jeong J, Song Y, Cho C, Yeom J, Lee T, Lee J, Lee H, Kim J. Accurately predicting mood episodes in mood disorder patients using wearable sleep and circadian rhythm features. npj Digital Medicine 2024;7(1) View
  8. Zhang Y, Stewart C, Ranjan Y, Conde P, Sankesara H, Rashid Z, Sun S, Dobson R, Folarin A. Large-scale digital phenotyping: Identifying depression and anxiety indicators in a general UK population with over 10,000 participants. Journal of Affective Disorders 2025;375:412 View
  9. Akre S, Cohen Z, Welborn A, Zbozinek T, Balliu B, Craske M, Bui A. Comparing self reported and physiological sleep quality from consumer devices to depression and neurocognitive performance. npj Digital Medicine 2025;8(1) View
  10. Yang M, Ngai E, Hu X, Hu B, Liu J, Gelenbe E, Leung V. Digital Phenotyping and Feature Extraction on Smartphone Data for Depression Detection. Proceedings of the IEEE 2024;112(12):1773 View
  11. Leaning I, Costanzo A, Jagesar R, Reus L, Visser P, Kas M, Beckmann C, Ruhé H, Marquand A. Uncovering Social States in Healthy and Clinical Populations Using Digital Phenotyping and Hidden Markov Models: Observational Study. Journal of Medical Internet Research 2025;27:e64007 View

Books/Policy Documents

  1. Perna G, Spiti A, Torti T, Daccò S, Caldirola D. Recent Advances and Challenges in the Treatment of Major Depressive Disorder. View

Conference Proceedings

  1. Hung K, Man G, Chui J, Chow D, Ling B, Pun S, Liu T. TENCON 2024 - 2024 IEEE Region 10 Conference (TENCON). Window-Based Quaternion Principal Component Analysis of Eye Gaze Dynamics for Depression Severity Prediction View