Published on in Vol 23, No 11 (2021): November

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/29749, first published .
The Role of Machine Learning in Diagnosing Bipolar Disorder: Scoping Review

The Role of Machine Learning in Diagnosing Bipolar Disorder: Scoping Review

The Role of Machine Learning in Diagnosing Bipolar Disorder: Scoping Review

Journals

  1. Wen Z, Zhang Y, Feng M, Wu Y, Fu C, Deng K, Lin Q, Liu B. Identification of discriminative neuroimaging markers for patients on hemodialysis with insomnia: a fractional amplitude of low frequency fluctuation-based machine learning analysis. BMC Psychiatry 2023;23(1) View
  2. Wu J, Wu J, Guo R, Chu L, Li J, Zhang S, Ren H. The decreased connectivity in middle temporal gyrus can be used as a potential neuroimaging biomarker for left temporal lobe epilepsy. Frontiers in Psychiatry 2022;13 View
  3. Highland D, Zhou G. A review of detection techniques for depression and bipolar disorder. Smart Health 2022;24:100282 View
  4. Crema C, Attardi G, Sartiano D, Redolfi A. Natural language processing in clinical neuroscience and psychiatry: A review. Frontiers in Psychiatry 2022;13 View
  5. Latifian M, Raheb G, Uddin R, Abdi K, Alikhani R. The process of stigma experience in the families of people living with bipolar disorder: a grounded theory study. BMC Psychology 2022;10(1) View
  6. Sadeghi D, Shoeibi A, Ghassemi N, Moridian P, Khadem A, Alizadehsani R, Teshnehlab M, Gorriz J, Khozeimeh F, Zhang Y, Nahavandi S, Acharya U. An overview of artificial intelligence techniques for diagnosis of Schizophrenia based on magnetic resonance imaging modalities: Methods, challenges, and future works. Computers in Biology and Medicine 2022;146:105554 View
  7. Vazquez S, Stadlan Z, Lapow J, Feldstein E, Shah S, Das A, Naftchi A, Spirollari E, Thaker A, Kazim S, Dominguez J, Patel N, Kurian C, Chong J, Mayer S, Kaur G, Gandhi C, Bowers C, Al-Mufti F. Frailty and outcomes in lacunar stroke. Journal of Stroke and Cerebrovascular Diseases 2023;32(2):106942 View
  8. Kondo F, Whitehead J, Corbalán F, Beaulieu S, Armony J. Emotion regulation in bipolar disorder type-I: multivariate analysis of fMRI data. International Journal of Bipolar Disorders 2023;11(1) View
  9. Shi Y, Bai L. Density Peaks Clustering Based on Candidate Center and Multi Assignment Policies. IEEE Access 2023;11:57158 View
  10. Giotakos O. Editorial: From brain priorities to brain modeling. Frontiers in Psychiatry 2023;14 View
  11. Tseng Y, Yang M. Using Kernel Density Estimation in Knowledge Distillation to Construct the Prediction Model for Bipolar Disorder Patients. Applied Sciences 2023;13(18):10280 View
  12. Bouazizi M, Zheng C, Yang S, Ohtsuki T. Dementia Detection from Speech: What If Language Models Are Not the Answer?. Information 2023;15(1):2 View
  13. Chen L, Xue J, Zhao L, He Y, Fu S, Ma X, Yu W, Tang Y, Wang Y, Gao Z. Lysophosphatidylcholine acyltransferase level predicts the severity and prognosis of patients with community-acquired pneumonia: a prospective multicenter study. Frontiers in Immunology 2024;14 View
  14. Shao X, Chen Z, Yu J, Lu F, Chen S, Xu J, Yao Y, Liu B, Yang P, Jiang Q, Hu B. Ultralow-cost piezoelectric sensor constructed by thermal compression bonding for long-term biomechanical signal monitoring in chronic mental disorders. Nanoscale 2024;16(6):2974 View
  15. Huang Y, Zhang J, He K, Mo X, Yu R, Min J, Zhu T, Ma Y, He X, Lv F, Lei D, Liu M. Innovative Neuroimaging Biomarker Distinction of Major Depressive Disorder and Bipolar Disorder through Structural Connectome Analysis and Machine Learning Models. Diagnostics 2024;14(4):389 View
  16. Kaur I, Kamini , Kaur J, Gagandeep , Singh S, Gupta U. Enhancing explainability in predicting mental health disorders using human–machine interaction. Multimedia Tools and Applications 2024 View
  17. Birner A, Mairinger M, Elst C, Maget A, Fellendorf F, Platzer M, Queissner R, Lenger M, Tmava‐Berisha A, Bengesser S, Reininghaus E, Kreuzthaler M, Dalkner N. Machine‐based learning of multidimensional data in bipolar disorder – pilot results. Bipolar Disorders 2024;26(4):364 View
  18. de Azevedo Cardoso T, Kochhar S, Torous J, Morton E. Digital Tools to Facilitate the Detection and Treatment of Bipolar Disorder: Key Developments and Future Directions. JMIR Mental Health 2024;11:e58631 View
  19. Meng X, Zhang S, Zhou S, Ma Y, Yu X, Guan L. Putative Risk Biomarkers of Bipolar Disorder in At-risk Youth. Neuroscience Bulletin 2024;40(10):1557 View
  20. Wang J, Ouyang H, Jiao R, Cheng S, Zhang H, Shang Z, Jia Y, Yan W, Wu L, Liu W. The application of machine learning techniques in posttraumatic stress disorder: a systematic review and meta-analysis. npj Digital Medicine 2024;7(1) View
  21. Dell’Osso B, Cremaschi L, Macellaro M, Cafaro R, Girone N. Bipolar disorder staging and the impact it has on its management: an update. Expert Review of Neurotherapeutics 2024;24(6):565 View
  22. Narula S, Pal A, Reddy M, Mahajan S. Research on clinical aspects of bipolar disorder: A review of Indian studies. Indian Journal of Psychiatry 2024;66(5):421 View
  23. Hu W, Feng J, Yang D. An improved density peaks clustering algorithm using similarity assignment strategy with K-nearest neighbors. Cluster Computing 2024;27(9):12689 View
  24. Amanollahi M, Jameie M, Looha M, A. Basti F, Cattarinussi G, Moghaddam H, Di Camillo F, Akhondzadeh S, Pigoni A, Sambataro F, Brambilla P, Delvecchio G. Machine learning applied to the prediction of relapse, hospitalization, and suicide in bipolar disorder using neuroimaging and clinical data: A systematic review. Journal of Affective Disorders 2024;361:778 View
  25. Wang Y, Huang C, Li P, Niu B, Fan T, Wang H, Zhou Y, Chai Y. Machine learning-based discrimination of unipolar depression and bipolar disorder with streamlined shortlist in adolescents of different ages. Computers in Biology and Medicine 2024;182:109107 View

Books/Policy Documents

  1. Magboo V, Magboo M. Well-Being in the Information Society: When the Mind Breaks. View
  2. Kulkarni H, MacAvaney S, Goharian N, Frieder O. Artificial Intelligence for Personalized Medicine. View
  3. Gao H, Chen L, Zhou Y, Chi K, Chan S. Pattern Recognition and Computer Vision. View
  4. Katebi M, Poshdar M, Babaeian Jelodar M, Zihayat Kermani M. CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality. View
  5. Katebi M, Poshdar M, Babaeian Jelodar M, Zihayat Kermani M. CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality. View