Published on in Vol 22, No 10 (2020): October
This is a member publication of Charite - Universitaetsmedizin Berlin, Medizinische Bibliothek, Germany
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/19263, first published
.
Journals
- Dunkel L, Fernandez-Luque L, Loche S, Savage M. Digital technologies to improve the precision of paediatric growth disorder diagnosis and management. Growth Hormone & IGF Research 2021;59:101408 View
- Hong D, Zheng Y, Xin Y, Sun L, Yang H, Lin M, Liu C, Li B, Zhang Z, Zhuang J, Qian M, Wang S. Genetic syndromes screening by facial recognition technology: VGG-16 screening model construction and evaluation. Orphanet Journal of Rare Diseases 2021;16(1) View
- Katsanis S, Claes P, Doerr M, Cook-Deegan R, Tenenbaum J, Evans B, Lee M, Anderton J, Weinberg S, Wagner J, Sane R. A survey of U.S. public perspectives on facial recognition technology and facial imaging data practices in health and research contexts. PLOS ONE 2021;16(10):e0257923 View
- Attallah O. A deep learning-based diagnostic tool for identifying various diseases via facial images. DIGITAL HEALTH 2022;8:205520762211244 View
- Pascolini G, Gaudioso F, Baldi M, Alario D, Dituri F, Novelli A, Baban A. Facial clues to the photosensitive trichothiodystrophy phenotype in childhood. Journal of Human Genetics 2023;68(6):437 View
- D’Souza A, Ryan E, Sidransky E. Facial features of lysosomal storage disorders. Expert Review of Endocrinology & Metabolism 2022;17(6):467 View
- Hsieh T, Bar-Haim A, Moosa S, Ehmke N, Gripp K, Pantel J, Danyel M, Mensah M, Horn D, Rosnev S, Fleischer N, Bonini G, Hustinx A, Schmid A, Knaus A, Javanmardi B, Klinkhammer H, Lesmann H, Sivalingam S, Kamphans T, Meiswinkel W, Ebstein F, Krüger E, Küry S, Bézieau S, Schmidt A, Peters S, Engels H, Mangold E, Kreiß M, Cremer K, Perne C, Betz R, Bender T, Grundmann-Hauser K, Haack T, Wagner M, Brunet T, Bentzen H, Averdunk L, Coetzer K, Lyon G, Spielmann M, Schaaf C, Mundlos S, Nöthen M, Krawitz P. GestaltMatcher facilitates rare disease matching using facial phenotype descriptors. Nature Genetics 2022;54(3):349 View
- Mensah M, Ott C, Horn D, Pantel J. A machine learning-based screening tool for genetic syndromes in children. The Lancet Digital Health 2022;4(5):e295 View
- Mahdi S, Matthews H, Nauwelaers N, Vanneste M, Gong S, Bouritsas G, Baynam G, Hammond P, Spritz R, Klein O, Hallgrimsson B, Peeters H, Bronstein M, Claes P. Multi-Scale Part-Based Syndrome Classification of 3D Facial Images. IEEE Access 2022;10:23450 View
- Porras A, Rosenbaum K, Tor-Diez C, Summar M, Linguraru M. A machine learning-based screening tool for genetic syndromes in children – Authors' reply. The Lancet Digital Health 2022;4(5):e296 View
- Park S, Kim J, Song T, Jang D. Case Report: The success of face analysis technology in extremely rare genetic diseases in Korea: Tatton–Brown–Rahman syndrome and Say–Barber –Biesecker–Young–Simpson variant of ohdo syndrome. Frontiers in Genetics 2022;13 View
- Ciancia S, Goedegebuure W, Grootjen L, Hokken-Koelega A, Kerkhof G, van der Kaay D. Computer-aided facial analysis as a tool to identify patients with Silver–Russell syndrome and Prader–Willi syndrome. European Journal of Pediatrics 2023;182(6):2607 View
- Zhang H, Lu Y, Qiao Y, Song H, Zhu Y. Role of "facial diagnosis" objectification in tumor diagnosis and treatment. Cancer Insight 2022;1(1):62 View
- Yankee T, Oh S, Winchester E, Wilderman A, Robinson K, Gordon T, Rosenfeld J, VanOudenhove J, Scott D, Leslie E, Cotney J. Integrative analysis of transcriptome dynamics during human craniofacial development identifies candidate disease genes. Nature Communications 2023;14(1) View
- Lesmann H, Klinkhammer H, M. Krawitz P. The future role of facial image analysis in ACMG classification guidelines. Medizinische Genetik 2023;35(2):115 View
- Kim J, Ko H, Woo H, Kim W. Lessons Learned from the Point-of-Care Use of a Facial Analysis Technology. Annals of Child Neurology 2023;31(4):271 View
- Ferri-Rufete D, López-González A, Casas-Alba D, Cuadras D, Palau F, Martínez-Monseny A. Clinical Genetics Assessment Triangle (CGAT): A simple tool to identify patients with genetic conditions. European Journal of Medical Genetics 2023;66(11):104858 View
- Carrer A, Romaniello M, Calderara M, Mariani M, Biondi A, Selicorni A. Application of the Face2Gene tool in an Italian dysmorphological pediatric clinic: Retrospective validation and future perspectives. American Journal of Medical Genetics Part A 2024;194(3) View
- Sellin J, Pantel J, Börsch N, Conrad R, Mücke M. Kurze Wege zur Diagnose mit künstlicher Intelligenz – systematische Literaturrecherche zu „diagnostic decision support systems“. Der Schmerz 2024;38(1):19 View
- Slattery S, Wilkinson J, Mittal A, Zheng C, Easton N, Singh S, Baker J, Rand C, Khaytin I, Stewart T, Demeter D, Weese-Mayer D. Computer-aided diagnostic screen for Congenital Central Hypoventilation Syndrome with facial phenotype. Pediatric Research 2024;95(7):1843 View
- Reiter A, Pantel J, Danyel M, Horn D, Ott C, Mensah M. Validation of 3 Computer-Aided Facial Phenotyping Tools (DeepGestalt, GestaltMatcher, and D-Score): Comparative Diagnostic Accuracy Study. Journal of Medical Internet Research 2024;26:e42904 View
- Ghorbanzadeh A, Prodduturi N, Casanegra A, McBane R, Wennberg P, Rooke T, Liedl D, Murphree D, Houghton D. Machine Learning Analysis of Facial Photographs for Predicting Bicuspid Aortic Valve. Mayo Clinic Proceedings: Digital Health 2024;2(3):319 View
- Sherif F, Tawfik N, Mousa D, Abdallah M, Cho Y. Automated Multi-Class Facial Syndrome Classification Using Transfer Learning Techniques. Bioengineering 2024;11(8):827 View
Books/Policy Documents
- Hartsfield J, Morford L, Shafi A. Integrated Clinical Orthodontics. View