Published on in Vol 15, No 5 (2013): May
Journals
- Ho T, Huang C, Lin C, Lai F, Ding J, Ho Y, Hung C. A Telesurveillance System With Automatic Electrocardiogram Interpretation Based on Support Vector Machine and Rule-Based Processing. JMIR Medical Informatics 2015;3(2):e21 View
- Yoon H. Screening newborns for metabolic disorders based on targeted metabolomics using tandem mass spectrometry. Annals of Pediatric Endocrinology & Metabolism 2015;20(3):119 View
- Yang Q, Xu L, Tang L, Yang J, Wu B, Chen N, Jiang J, Yu R. Simultaneous detection of multiple inherited metabolic diseases using GC-MS urinary metabolomics by chemometrics multi-class classification strategies. Talanta 2018;186:489 View
- Chen W, Wu Z, Yang C, Liao Z, Lai F, Hsu C, Sun W. Pulse Analysis System with a Novice Periodic Function Examination Method on Sepsis Survival Prediction. Procedia Computer Science 2014;37:317 View
- Segundo U, Aldámiz-Echevarría L, López-Cuadrado J, Buenestado D, Andrade F, Pérez T, Barrena R, Pérez-Yarza E, Pikatza J. Improvement of newborn screening using a fuzzy inference system. Expert Systems with Applications 2017;78:301 View
- Parveen A, Mustafa S, Yadav P, Kumar A. Applications of Machine Learning in miRNA Discovery and Target Prediction. Current Genomics 2020;20(8):537 View
- Peng G, Tang Y, Cowan T, Enns G, Zhao H, Scharfe C. Reducing False-Positive Results in Newborn Screening Using Machine Learning. International Journal of Neonatal Screening 2020;6(1):16 View
- Zhu Z, Gu J, Genchev G, Cai X, Wang Y, Guo J, Tian G, Lu H. Improving the Diagnosis of Phenylketonuria by Using a Machine Learning–Based Screening Model of Neonatal MRM Data. Frontiers in Molecular Biosciences 2020;7 View
- Shchelochkov O, Manoli I, Juneau P, Sloan J, Ferry S, Myles J, Schoenfeld M, Pass A, McCoy S, Van Ryzin C, Wenger O, Levin M, Zein W, Huryn L, Snow J, Chlebowski C, Thurm A, Kopp J, Chen K, Venditti C. Severity modeling of propionic acidemia using clinical and laboratory biomarkers. Genetics in Medicine 2021;23(8):1534 View
- Chen N, Wang H, Wu B, Jiang J, Yang J, Tang L, He H, Linghu D. Using random forest to detect multiple inherited metabolic diseases simultaneously based on GC-MS urinary metabolomics. Talanta 2021;235:122720 View
- Mak J, Peng G, Le A, Gandotra N, Enns G, Scharfe C, Cowan T. Validation of a targeted metabolomics panel for improved second‐tier newborn screening. Journal of Inherited Metabolic Disease 2023;46(2):194 View
- Song Y, Yin Z, Zhang C, Hao S, Li H, Wang S, Yang X, Li Q, Zhuang D, Zhang X, Cao Z, Ma X. Random forest classifier improving phenylketonuria screening performance in two Chinese populations. Frontiers in Molecular Biosciences 2022;9 View
- Zaunseder E, Haupt S, Mütze U, Garbade S, Kölker S, Heuveline V. Opportunities and challenges in machine learning‐based newborn screening—A systematic literature review. JIMD Reports 2022;63(3):250 View
- Chen X, Cheng G, Wang F, Tao X, Xie H, Xu L. Machine and cognitive intelligence for human health: systematic review. Brain Informatics 2022;9(1) View
- Usha Rani G, Kadali S, Kurma Reddy B, Shaheena D, Naushad S. Application of machine learning tools and integrated OMICS for screening and diagnosis of inborn errors of metabolism. Metabolomics 2023;19(5) View
- Keles E, Bagci U. The past, current, and future of neonatal intensive care units with artificial intelligence: a systematic review. npj Digital Medicine 2023;6(1) View
- Panchbudhe S, Shivkar R, Banerjee A, Deshmukh P, Maji B, Kadam C. Improving newborn screening in India: Disease gaps and quality control. Clinica Chimica Acta 2024;557:117881 View
- Velasco-Aznar A, Rendón-Macías M, Silva-Ramírez H, Gerardo-Del Hoyo M, Cruz-Camino H, Cantú-Reyna C, Moscona-Nissan A, Wollenstein-Seligson D. Resultados del programa de tamiz metabólico en un hospital privado de la Ciudad de México. Revista Mexicana de Pediatría 2023;90(6):221 View
- Yin Z, Zhang C, Dong R, Zhang X, Song Y, Hao S, Gai Z, Zhou B, Hui L, Wang S, Xue H, Cao Z, Liu Y, Ma X. Improving methylmalonic acidemia (MMA) screening and MMA genotype prediction using random forest classifier in two Chinese populations. European Journal of Medical Research 2024;29(1) View
Books/Policy Documents
- Miletić Vukajlović J, Panić-Janković T. Mass Spectrometry in Life Sciences and Clinical Laboratory. View