Published on in Vol 23, No 12 (2021): December

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/30805, first published .
Health Care Analytics With Time-Invariant and Time-Variant Feature Importance to Predict Hospital-Acquired Acute Kidney Injury: Observational Longitudinal Study

Health Care Analytics With Time-Invariant and Time-Variant Feature Importance to Predict Hospital-Acquired Acute Kidney Injury: Observational Longitudinal Study

Health Care Analytics With Time-Invariant and Time-Variant Feature Importance to Predict Hospital-Acquired Acute Kidney Injury: Observational Longitudinal Study

New in JMIR: #HealthCare Analytics With Time-Invariant and Time-Variant Feature Importance to Predict #Hospital-Acq… https://t.co/DuUUdTAl8v

3:36 PM · Dec 24, 2021

0
1

RT @jmirpub: New in JMIR: #HealthCare Analytics With Time-Invariant and Time-Variant Feature Importance to Predict #Hospital-Acquired Acute…

3:37 PM · Dec 24, 2021

0
1

RT @jmirpub: New in JMIR: #HealthCare Analytics With Time-Invariant and Time-Variant Feature Importance to Predict #Hospital-Acquired Acute…

3:37 PM · Dec 24, 2021

0
1

Health Care Analytics With Time-Invariant and Time-Variant Feature Importance to Predict Hospital-Acquired Acute Ki… https://t.co/E6RkkDBA9u

8:09 AM · Dec 25, 2021

0
0

Health Care Analytics With Time-Invariant and Time-Variant Feature Importance to Predict Hospital-Acquired Acute Ki… https://t.co/E6RkkDBA9u

8:09 AM · Dec 25, 2021

0
0

#HealthCare #Analytics With Time-#Invariant and Time-Variant Feature Importance to #Predict Hospital-Acquired… https://t.co/La5CnUZLWy

9:33 AM · Dec 25, 2021

0
0

#HealthCare #Analytics With Time-#Invariant and Time-Variant Feature Importance to #Predict Hospital-Acquired… https://t.co/La5CnUZLWy

9:33 AM · Dec 25, 2021

0
0

Support our NUHS informatics @JMedInternetRes https://t.co/KvbNGeBWz8

8:54 AM · Dec 26, 2021

0
0

Support our NUHS informatics @JMedInternetRes https://t.co/KvbNGeBWz8

8:54 AM · Dec 26, 2021

0
0

https://t.co/wI74eCxXpR bidirectional rnnを使用し、入院中のAKIを48時間前からのデータから予測するリアルタイムAKI監視モデルを作成。AUROCが0.81 敗血症、急性冠症候群、腎毒性、多臓器障害がリスクファクターだった。

1:57 AM · Dec 29, 2021

0
0

https://t.co/wI74eCxXpR bidirectional rnnを使用し、入院中のAKIを48時間前からのデータから予測するリアルタイムAKI監視モデルを作成。AUROCが0.81 敗血症、急性冠症候群、腎毒性、多臓器障害がリスクファクターだった。

1:57 AM · Dec 29, 2021

0
0