Published on in Vol 22, No 7 (2020): July

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/17758, first published .
Detection of Suicidal Ideation on Social Media: Multimodal, Relational, and Behavioral Analysis

Detection of Suicidal Ideation on Social Media: Multimodal, Relational, and Behavioral Analysis

Detection of Suicidal Ideation on Social Media: Multimodal, Relational, and Behavioral Analysis

Journals

  1. Moon H, Lee G. Evaluation of Korean-Language COVID-19–Related Medical Information on YouTube: Cross-Sectional Infodemiology Study. Journal of Medical Internet Research 2020;22(8):e20775 View
  2. Balsamo D, Bajardi P, Salomone A, Schifanella R. Patterns of Routes of Administration and Drug Tampering for Nonmedical Opioid Consumption: Data Mining and Content Analysis of Reddit Discussions. Journal of Medical Internet Research 2021;23(1):e21212 View
  3. Ramírez-Cifuentes D, Freire A, Baeza-Yates R, Sanz Lamora N, Álvarez A, González-Rodríguez A, Lozano Rochel M, Llobet Vives R, Velazquez D, Gonfaus J, Gonzàlez J. Characterization of Anorexia Nervosa on Social Media: Textual, Visual, Relational, Behavioral, and Demographical Analysis. Journal of Medical Internet Research 2021;23(7):e25925 View
  4. Chadha A, Kaushik B. Performance Evaluation of Learning Models for Identification of Suicidal Thoughts. The Computer Journal 2022;65(1):139 View
  5. Pan W, Wang X, Zhou W, Hang B, Guo L. Linguistic Analysis for Identifying Depression and Subsequent Suicidal Ideation on Weibo: Machine Learning Approaches. International Journal of Environmental Research and Public Health 2023;20(3):2688 View
  6. Chatterjee M, Kumar P, Samanta P, Sarkar D. Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2022;2(2):100103 View
  7. Sarkar D, Kumar P, Samanta P, Dutta S, Chatterjee M. A Two-Level Multi-Modal Analysis for Depression Detection From Online Social Media. International Journal of Software Innovation 2022;10(1):1 View
  8. Ramirez-Cifuentes D, Largeron C, Tissier J, Baeza-Yates R, Freire A. Enhanced Word Embedding Variations for the Detection of Substance Abuse and Mental Health Issues on Social Media Writings. IEEE Access 2021;9:130449 View
  9. Ríssola E, Aliannejadi M, Crestani F. Mental disorders on online social media through the lens of language and behaviour: Analysis and visualisation. Information Processing & Management 2022;59(3):102890 View
  10. Ng L, Taeihagh A. How does fake news spread? Understanding pathways of disinformation spread through APIs. Policy & Internet 2021 View
  11. Lao C, Lane J, Suominen H. Analyzing Suicide Risk From Linguistic Features in Social Media: Evaluation Study. JMIR Formative Research 2022;6(8):e35563 View
  12. Heckler W, de Carvalho J, Barbosa J. Machine learning for suicidal ideation identification: A systematic literature review. Computers in Human Behavior 2022;128:107095 View
  13. Wu E, Wu C, Lee M, Chu K, Huang M. Development of Internet suicide message identification and the Monitoring-Tracking-Rescuing model in Taiwan. Journal of Affective Disorders 2023;320:37 View
  14. Guo J, Kimmel J, Linder L. Text Analysis of Suicide Risk in Adolescents and Young Adults. Journal of the American Psychiatric Nurses Association 2024;30(1):169 View
  15. Kim D, Jung W, Nam S, Jeon H, Baek J, Zhu Y. Understanding information behavior of South Korean Twitter users who express suicidality on Twitter. DIGITAL HEALTH 2022;8:205520762210863 View
  16. Malhotra A, Jindal R. Deep learning techniques for suicide and depression detection from online social media: A scoping review. Applied Soft Computing 2022;130:109713 View
  17. Zerrouki K, Hamou R, Rahmoun A. Spotted Hyenas Approach ‎for Suicidal Prediction. International Journal of Organizational and Collective Intelligence 2022;12(1):1 View
  18. Barua P, Vicnesh J, Lih O, Palmer E, Yamakawa T, Kobayashi M, Acharya U. Artificial intelligence assisted tools for the detection of anxiety and depression leading to suicidal ideation in adolescents: a review. Cognitive Neurodynamics 2024;18(1):1 View
  19. Zhang Y, Lyu H, Liu Y, Zhang X, Wang Y, Luo J. Monitoring Depression Trends on Twitter During the COVID-19 Pandemic: Observational Study. JMIR Infodemiology 2021;1(1):e26769 View
  20. Rentz D, Heckler W, Barbosa J. A computational model for assisting individuals with suicidal ideation based on context histories. Universal Access in the Information Society 2024;23(3):1447 View
  21. Sharma A, Kaushik B, Chadha A, Sharma R. Comparative evaluation of deep dense sequential and deep dense transfer learning models for suicidal emotion prediction. Concurrency and Computation: Practice and Experience 2023;35(22) View
  22. Parsapoor (Mah Parsa) M, Koudys J, Ruocco A. Suicide risk detection using artificial intelligence: the promise of creating a benchmark dataset for research on the detection of suicide risk. Frontiers in Psychiatry 2023;14 View
  23. Chatterjee M, Kumar P, Sarkar D. Generating a Mental Health Curve for Monitoring Depression in Real Time by Incorporating Multimodal Feature Analysis Through Social Media Interactions. International Journal of Intelligent Information Technologies 2023;19(1):1 View
  24. Heckler W, Feijó L, de Carvalho J, Barbosa J. Thoth: An intelligent model for assisting individuals with suicidal ideation. Expert Systems with Applications 2023;233:120918 View
  25. Solans Noguero D, Ramírez-Cifuentes D, Ríssola E, Freire A. Gender Bias When Using Artificial Intelligence to Assess Anorexia Nervosa on Social Media: Data-Driven Study. Journal of Medical Internet Research 2023;25:e45184 View
  26. Khoo L, Lim M, Chong C, McNaney R. Machine Learning for Multimodal Mental Health Detection: A Systematic Review of Passive Sensing Approaches. Sensors 2024;24(2):348 View
  27. Abdulsalam A, Alhothali A, Al-Ghamdi S. Detecting Suicidality in Arabic Tweets Using Machine Learning and Deep Learning Techniques. Arabian Journal for Science and Engineering 2024;49(9):12729 View
  28. Gorai J, Shaw D. A BERT-encoded ensembled CNN model for suicide risk identification in social media posts. Neural Computing and Applications 2024;36(18):10955 View
  29. Montejo-Ráez A, Molina-González M, Jiménez-Zafra S, García-Cumbreras M, García-López L. A survey on detecting mental disorders with natural language processing: Literature review, trends and challenges. Computer Science Review 2024;53:100654 View
  30. Theophilou E, Lobo-Quintero R, Hernández-Leo D, Sánchez-Reina R, Ognibene D. Embedding Educational Narrative Scripts in a Social Media Environment. IEEE Transactions on Learning Technologies 2024;17:1780 View
  31. Atmakuru A, Shahini A, Chakraborty S, Seoni S, Salvi M, Hafeez-Baig A, Rashid S, Tan R, Barua P, Molinari F, Acharya U. Artificial intelligence-based suicide prevention and prediction: A systematic review (2019–2023). Information Fusion 2025;114:102673 View
  32. Merayo N, Ayuso-Lanchares A, González-Sanguino C. Machine learning and natural language processing to assess the emotional impact of influencers’ mental health content on Instagram. PeerJ Computer Science 2024;10:e2251 View
  33. Abdulsalam A, Alhothali A. Suicidal ideation detection on social media: a review of machine learning methods. Social Network Analysis and Mining 2024;14(1) View
  34. Moran P, Chandler A, Dudgeon P, Kirtley O, Knipe D, Pirkis J, Sinyor M, Allister R, Ansloos J, Ball M, Chan L, Darwin L, Derry K, Hawton K, Heney V, Hetrick S, Li A, Machado D, McAllister E, McDaid D, Mehra I, Niederkrotenthaler T, Nock M, O'Keefe V, Oquendo M, Osafo J, Patel V, Pathare S, Peltier S, Roberts T, Robinson J, Shand F, Stirling F, Stoor J, Swingler N, Turecki G, Venkatesh S, Waitoki W, Wright M, Yip P, Spoelma M, Kapur N, O'Connor R, Christensen H. The Lancet Commission on self-harm. The Lancet 2024;404(10461):1445 View
  35. Tian X, Li J, Wang X, Xu L, Luo F. Suicidal ideation recognition based on sentence completion test via coding- and topic-enhanced model. Computers in Human Behavior 2025;162:108476 View
  36. Oliveira F, Neri D, Ribeiro K, Oliveira L, Santos E, Pereira M, Lima S. O USO DA INTELIGÊNCIA ARTIFICIAL NA IDENTIFICAÇÃO DO PACIENTE PSIQUIÁTRICO COM TENDÊNCIA SUICIDA. Revista Contemporânea 2024;4(10):e6253 View
  37. Álvarez-López J, Castro-Sánchez N. Word Embeddings and Machine Learning Classifiers Applications for Automatic Detection of Suicide Tendencies in Social Media. Programming and Computer Software 2024;50(8):612 View

Books/Policy Documents

  1. Chan J, Chua S, Foo L. Proceedings of the International Conference on Computer, Information Technology and Intelligent Computing (CITIC 2022). View
  2. Uban A, Chulvi B, Rosso P. Early Detection of Mental Health Disorders by Social Media Monitoring. View
  3. Wongkoblap A, Vadillo M, Curcin V. Mental Health in a Digital World. View
  4. Pérez A, Piot-Pérez-Abadín P, Parapar J, Barreiro Á. Advances in Information Retrieval. View
  5. Ivaschenko A, Dubinina I, Golovnin O, Golovnina A, Sitnikov P. Creativity in Intelligent Technologies and Data Science. View
  6. Chatterjee M, Modak S, Sarkar D. Cognitive Cardiac Rehabilitation Using IoT and AI Tools. View
  7. Sazzed S. Social, Cultural, and Behavioral Modeling. View