Published on in Vol 21, No 4 (2019): April

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/11029, first published .
Mood Prediction of Patients With Mood Disorders by Machine Learning Using Passive Digital Phenotypes Based on the Circadian Rhythm: Prospective Observational Cohort Study

Mood Prediction of Patients With Mood Disorders by Machine Learning Using Passive Digital Phenotypes Based on the Circadian Rhythm: Prospective Observational Cohort Study

Mood Prediction of Patients With Mood Disorders by Machine Learning Using Passive Digital Phenotypes Based on the Circadian Rhythm: Prospective Observational Cohort Study

Journals

  1. Goldstein-Piekarski A, Holt-Gosselin B, O’Hora K, Williams L. Integrating sleep, neuroimaging, and computational approaches for precision psychiatry. Neuropsychopharmacology 2020;45(1):192 View
  2. Vesel C, Rashidisabet H, Zulueta J, Stange J, Duffecy J, Hussain F, Piscitello A, Bark J, Langenecker S, Young S, Mounts E, Omberg L, Nelson P, Moore R, Koziol D, Bourne K, Bennett C, Ajilore O, Demos A, Leow A. Effects of mood and aging on keystroke dynamics metadata and their diurnal patterns in a large open-science sample: A BiAffect iOS study. Journal of the American Medical Informatics Association 2020;27(7):1007 View
  3. Lee H. Circadian Misalignment and Bipolar Disorder. Chronobiology in Medicine 2019;1(4):132 View
  4. van Kraaij A, Schiavone G, Lutin E, Claes S, Van Hoof C. Relationship Between Chronic Stress and Heart Rate Over Time Modulated by Gender in a Cohort of Office Workers: Cross-Sectional Study Using Wearable Technologies. Journal of Medical Internet Research 2020;22(9):e18253 View
  5. Radhakrishnan K, Kim M, Burgermaster M, Brown R, Xie B, Bray M, Fournier C. The potential of digital phenotyping to advance the contributions of mobile health to self-management science. Nursing Outlook 2020;68(5):548 View
  6. Benoit J, Onyeaka H, Keshavan M, Torous J. Systematic Review of Digital Phenotyping and Machine Learning in Psychosis Spectrum Illnesses. Harvard Review of Psychiatry 2020;28(5):296 View
  7. de Zambotti M, Cellini N, Menghini L, Sarlo M, Baker F. Sensors Capabilities, Performance, and Use of Consumer Sleep Technology. Sleep Medicine Clinics 2020;15(1):1 View
  8. Hidalgo-Mazzei D, Llach C, Vieta E. mHealth in affective disorders: hype or hope? A focused narrative review. International Clinical Psychopharmacology 2020;35(2):61 View
  9. Haines-Delmont A, Chahal G, Bruen A, Wall A, Khan C, Sadashiv R, Fearnley D. Testing Suicide Risk Prediction Algorithms Using Phone Measurements With Patients in Acute Mental Health Settings: Feasibility Study. JMIR mHealth and uHealth 2020;8(6):e15901 View
  10. Jang J, Choi J, Roh H, Son S, Hong C, Kim E, Kim T, Yoon D. Deep Learning Approach for Imputation of Missing Values in Actigraphy Data: Algorithm Development Study. JMIR mHealth and uHealth 2020;8(7):e16113 View
  11. Kim H, Lee S, Lee S, Hong S, Kang H, Kim N. Depression Prediction by Using Ecological Momentary Assessment, Actiwatch Data, and Machine Learning: Observational Study on Older Adults Living Alone. JMIR mHealth and uHealth 2019;7(10):e14149 View
  12. Opel N, Hahn T. Digitale Phänotypisierung. Pro. Der Nervenarzt 2020;91(9):857 View
  13. Cho C, Lee T, Lee J, Seo J, Jee H, Son S, An H, Kim L, Lee H. Effectiveness of a Smartphone App With a Wearable Activity Tracker in Preventing the Recurrence of Mood Disorders: Prospective Case-Control Study. JMIR Mental Health 2020;7(8):e21283 View
  14. Hafiz P, Miskowiak K, Maxhuni A, Kessing L, Bardram J. Wearable Computing Technology for Assessment of Cognitive Functioning of Bipolar Patients and Healthy Controls. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2020;4(4):1 View
  15. Aubourg T, Demongeot J, Provost H, Vuillerme N. Exploitation of Outgoing and Incoming Telephone Calls in the Context of Circadian Rhythms of Social Activity Among Elderly People: Observational Descriptive Study. JMIR mHealth and uHealth 2020;8(11):e13535 View
  16. Bai R, Xiao L, Guo Y, Zhu X, Li N, Wang Y, Chen Q, Feng L, Wang Y, Yu X, Wang C, Hu Y, Liu Z, Xie H, Wang G. Tracking and Monitoring Mood Stability of Patients With Major Depressive Disorder by Machine Learning Models Using Passive Digital Data: Prospective Naturalistic Multicenter Study. JMIR mHealth and uHealth 2021;9(3):e24365 View
  17. Hays R, Keshavan M, Wisniewski H, Torous J. Deriving symptom networks from digital phenotyping data in serious mental illness. BJPsych Open 2020;6(6) View
  18. Aubourg T, Demongeot J, Vuillerme N. Novel statistical approach for assessing the persistence of the circadian rhythms of social activity from telephone call detail records in older adults. Scientific Reports 2020;10(1) View
  19. Davidson B. The crossroads of digital phenotyping. General Hospital Psychiatry 2022;74:126 View
  20. Orsolini L, Fiorani M, Volpe U. Digital Phenotyping in Bipolar Disorder: Which Integration with Clinical Endophenotypes and Biomarkers?. International Journal of Molecular Sciences 2020;21(20):7684 View
  21. Patoz M, Hidalgo-Mazzei D, Blanc O, Verdolini N, Pacchiarotti I, Murru A, Zukerwar L, Vieta E, Llorca P, Samalin L. Patient and physician perspectives of a smartphone application for depression: a qualitative study. BMC Psychiatry 2021;21(1) View
  22. Aftab A, Sharma M. How not to think about biomarkers in psychiatry: Challenges and conceptual pitfalls. Biomarkers in Neuropsychiatry 2021;4:100031 View
  23. Sükei E, Norbury A, Perez-Rodriguez M, Olmos P, Artés A. Predicting Emotional States Using Behavioral Markers Derived From Passively Sensed Data: Data-Driven Machine Learning Approach. JMIR mHealth and uHealth 2021;9(3):e24465 View
  24. Sagorac Gruichich T, David Gomez J, Zayas‐Cabán G, McInnis M, Cochran A. A digital self‐report survey of mood for bipolar disorder. Bipolar Disorders 2021;23(8):810 View
  25. Fellendorf F, Hamm C, Dalkner N, Platzer M, Sattler M, Bengesser S, Lenger M, Pilz R, Birner A, Queissner R, Tmava-Berisha A, Ratzenhofer M, Maget A, van Poppel M, Reininghaus E. Monitoring Sleep Changes via a Smartphone App in Bipolar Disorder: Practical Issues and Validation of a Potential Diagnostic Tool. Frontiers in Psychiatry 2021;12 View
  26. Anýž J, Bakštein E, Dally A, Kolenič M, Hlinka J, Hartmannová T, Urbanová K, Correll C, Novák D, Španiel F. Validity of the Aktibipo Self-rating Questionnaire for the Digital Self-assessment of Mood and Relapse Detection in Patients With Bipolar Disorder: Instrument Validation Study. JMIR Mental Health 2021;8(8):e26348 View
  27. Doki S, Sasahara S, Hori D, Oi Y, Takahashi T, Shiraki N, Ikeda Y, Ikeda T, Arai Y, Muroi K, Matsuzaki I. Comparison of predicted psychological distress among workers between artificial intelligence and psychiatrists: a cross-sectional study in Tsukuba Science City, Japan. BMJ Open 2021;11(6):e046265 View
  28. Jan Z, AI-Ansari N, Mousa O, Abd-alrazaq A, Ahmed A, Alam T, Househ M. The Role of Machine Learning in Diagnosing Bipolar Disorder: Scoping Review. Journal of Medical Internet Research 2021;23(11):e29749 View
  29. Sinha J, Vashisth K, Ghosh S. The importance of sleep studies in improving the health indices of a nation. Sleep Medicine: X 2022;4:100049 View
  30. Chen M, Shen K, Wang R, Miao Y, Jiang Y, Hwang K, Hao Y, Tao G, Hu L, Liu Z. Negative Information Measurement at AI Edge: A New Perspective for Mental Health Monitoring. ACM Transactions on Internet Technology 2022;22(3):1 View
  31. Kim K, Lee J, Choi J, Seo J, Yeom J, Cho C, Bae J, Kim S, Lee H, Kim N. Identification of Healthy and Unhealthy Lifestyles by a Wearable Activity Tracker in Type 2 Diabetes: A Machine Learning-Based Analysis. Endocrinology and Metabolism 2022;37(3):547 View
  32. Gomes S, von Schantz M, Leocadio-Miguel M. Predicting depressive symptoms in middle-aged and elderly adults using sleep data and clinical health markers: A machine learning approach. Sleep Medicine 2023;102:123 View
  33. Sato S, Bunney B, Mendoza-Viveros L, Bunney W, Borrelli E, Sassone-Corsi P, Orozco-Solis R. Rapid-acting antidepressants and the circadian clock. Neuropsychopharmacology 2022;47(4):805 View
  34. Van Assche E, Antoni Ramos-Quiroga J, Pariante C, Sforzini L, Young A, Flossbach Y, Gold S, Hoogendijk W, Baune B, Maron E. Digital tools for the assessment of pharmacological treatment for depressive disorder: State of the art. European Neuropsychopharmacology 2022;60:100 View
  35. Grant A, Erickson E. Birth, love, and fear: Physiological networks from pregnancy to parenthood. Comprehensive Psychoneuroendocrinology 2022;11:100138 View
  36. Wu C, McMahon M, Fritz H, Schnyer D. circadian rhythms are not captured equal: Exploring Circadian metrics extracted by differentcomputational methods from smartphone accelerometer and GPS sensors in daily life tracking. DIGITAL HEALTH 2022;8:205520762211142 View
  37. Milne-Ives M, Selby E, Inkster B, Lam C, Meinert E, Narasimhan P. Artificial intelligence and machine learning in mobile apps for mental health: A scoping review. PLOS Digital Health 2022;1(8):e0000079 View
  38. Vega J, Li M, Aguillera K, Goel N, Joshi E, Khandekar K, Durica K, Kunta A, Low C. Reproducible Analysis Pipeline for Data Streams: Open-Source Software to Process Data Collected With Mobile Devices. Frontiers in Digital Health 2021;3 View
  39. Gonzalez R, Gonzalez S, McCarthy M. Using Chronobiological Phenotypes to Address Heterogeneity in Bipolar Disorder. Complex Psychiatry 2019;5(Suppl. 1):72 View
  40. Anmella G, Faurholt‐Jepsen M, Hidalgo‐Mazzei D, Radua J, Passos I, Kapczinski F, Minuzzi L, Alda M, Meier S, Hajek T, Ballester P, Birmaher B, Hafeman D, Goldstein T, Brietzke E, Duffy A, Haarman B, López‐Jaramillo C, Yatham L, Lam R, Isometsa E, Mansur R, McIntyre R, Mwangi B, Vieta E, Kessing L. Smartphone‐based interventions in bipolar disorder: Systematic review and meta‐analyses of efficacy. A position paper from the International Society for Bipolar Disorders (ISBD) Big Data Task Force. Bipolar Disorders 2022;24(6):580 View
  41. Zarate D, Stavropoulos V, Ball M, de Sena Collier G, Jacobson N. Exploring the digital footprint of depression: a PRISMA systematic literature review of the empirical evidence. BMC Psychiatry 2022;22(1) View
  42. Lee H, Cho C, Lee T, Jeong J, Yeom J, Kim S, Jeon S, Seo J, Moon E, Baek J, Park D, Kim S, Ha T, Cha B, Kang H, Ahn Y, Lee Y, Lee J, Kim L. Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study. Psychological Medicine 2023;53(12):5636 View
  43. Moura I, Teles A, Viana D, Marques J, Coutinho L, Silva F. Digital Phenotyping of Mental Health using multimodal sensing of multiple situations of interest: A Systematic Literature Review. Journal of Biomedical Informatics 2023;138:104278 View
  44. Saccaro L, Amatori G, Cappelli A, Mazziotti R, Dell'Osso L, Rutigliano G. Portable technologies for digital phenotyping of bipolar disorder: A systematic review. Journal of Affective Disorders 2021;295:323 View
  45. Abd-alrazaq A, AlSaad R, Aziz S, Ahmed A, Denecke K, Househ M, Farooq F, Sheikh J. Wearable Artificial Intelligence for Anxiety and Depression: Scoping Review. Journal of Medical Internet Research 2023;25:e42672 View
  46. Guo P, Fang Y, Feng M, Shen Y, Yang S, Wang S, Qian M. Study on the Changes in Circadian Rhythm Before and After Treatment and the Influencing Factors in Patients with Depression. Neuropsychiatric Disease and Treatment 2022;Volume 18:2661 View
  47. Ren B, Xia C, Gehrman P, Barnett I, Satterthwaite T. Measuring Daily Activity Rhythms in Young Adults at Risk of Affective Instability Using Passively Collected Smartphone Data: Observational Study. JMIR Formative Research 2022;6(9):e33890 View
  48. Maatoug R, Oudin A, Adrien V, Saudreau B, Bonnot O, Millet B, Ferreri F, Mouchabac S, Bourla A. Digital phenotype of mood disorders: A conceptual and critical review. Frontiers in Psychiatry 2022;13 View
  49. Ortiz A, Maslej M, Husain M, Daskalakis Z, Mulsant B. Apps and gaps in bipolar disorder: A systematic review on electronic monitoring for episode prediction. Journal of Affective Disorders 2021;295:1190 View
  50. Kang Y, Sun T, Kim G, Jung H, Kim H, Lee S, Park Y, Tu J, Lee J, Choi K, Cho C. Design and Methods of a Prospective Smartphone App-Based Study for Digital Phenotyping of Mood and Anxiety Symptoms Mixed With Centralized and Decentralized Research Form: The Search Your Mind (S.Y.M., 心) Project. Psychiatry Investigation 2022;19(7):588 View
  51. Orr M, MacLeod L, Bagnell A, McGrath P, Wozney L, Meier S. The comfort of adolescent patients and their parents with mobile sensing and digital phenotyping. Computers in Human Behavior 2023;140:107603 View
  52. Ross M, Tulabandhula T, Bennett C, Baek E, Kim D, Hussain F, Demos A, Ning E, Langenecker S, Ajilore O, Leow A. A Novel Approach to Clustering Accelerometer Data for Application in Passive Predictions of Changes in Depression Severity. Sensors 2023;23(3):1585 View
  53. Cotes R, Boazak M, Griner E, Jiang Z, Kim B, Bremer W, Seyedi S, Bahrami Rad A, Clifford G. Multimodal Assessment of Schizophrenia and Depression Utilizing Video, Acoustic, Locomotor, Electroencephalographic, and Heart Rate Technology: Protocol for an Observational Study. JMIR Research Protocols 2022;11(7):e36417 View
  54. Sukholeister O, Nakonechnyi A. RECOGNITION OF MENTAL DISORDERS FROM PHYSIOLOGICAL SIGNALS ANALYSIS. Measuring Equipment and Metrology 2022;83(4):11 View
  55. Kalisperakis E, Karantinos T, Lazaridi M, Garyfalli V, Filntisis P, Zlatintsi A, Efthymiou N, Mantas A, Mantonakis L, Mougiakos T, Maglogiannis I, Tsanakas P, Maragos P, Smyrnis N. Smartwatch digital phenotypes predict positive and negative symptom variation in a longitudinal monitoring study of patients with psychotic disorders. Frontiers in Psychiatry 2023;14 View
  56. Kim W, Kim H, Pack S, Lim J, Cho C, Lee H. Machine Learning–Based Prediction of Attention-Deficit/Hyperactivity Disorder and Sleep Problems With Wearable Data in Children. JAMA Network Open 2023;6(3):e233502 View
  57. Abd-Alrazaq A, AlSaad R, Shuweihdi F, Ahmed A, Aziz S, Sheikh J. Systematic review and meta-analysis of performance of wearable artificial intelligence in detecting and predicting depression. npj Digital Medicine 2023;6(1) View
  58. Cho E, Kim S, Heo S, Shin J, Hwang S, Kwon E, Lee S, Kim S, Kang B. Machine learning-based predictive models for the occurrence of behavioral and psychological symptoms of dementia: model development and validation. Scientific Reports 2023;13(1) View
  59. Peerenboom N, Aryal S, Blankenship J, Swibas T, Zhai Y, Clay I, Lyden K. The Case for the Patient-Centric Development of Novel Digital Sleep Assessment Tools in Major Depressive Disorder. Digital Biomarkers 2023;7(1):124 View
  60. Bufano P, Laurino M, Said S, Tognetti A, Menicucci D. Digital Phenotyping for Monitoring Mental Disorders: Systematic Review. Journal of Medical Internet Research 2023;25:e46778 View
  61. ZhuParris A, de Goede A, Yocarini I, Kraaij W, Groeneveld G, Doll R. Machine Learning Techniques for Developing Remotely Monitored Central Nervous System Biomarkers Using Wearable Sensors: A Narrative Literature Review. Sensors 2023;23(11):5243 View
  62. Oudin A, Maatoug R, Bourla A, Ferreri F, Bonnot O, Millet B, Schoeller F, Mouchabac S, Adrien V. Digital Phenotyping: Data-Driven Psychiatry to Redefine Mental Health. Journal of Medical Internet Research 2023;25:e44502 View
  63. Malgaroli M, Tseng E, Hull T, Jennings E, Choudhury T, Simon N. Association of Health Care Work With Anxiety and Depression During the COVID-19 Pandemic: Structural Topic Modeling Study. JMIR AI 2023;2:e47223 View
  64. Budi M, Ferdiman B, Sidharta S. Detection Sleep Stages Using Deep Learning for Better Sleep Management: Systematic Literature Review. Procedia Computer Science 2023;227:389 View
  65. Lee D, Kim N, Jung I, Park S, Yu J, Seo J, Kim J, Kim K, Kim N, Yoo H, Kim S, Choi K, Baik S, Park S, Kim N. Clinical and Lifestyle Determinants of Continuous Glucose Monitoring Metrics in Insulin-Treated Patients with Type 2 Diabetes Mellitus. Diabetes & Metabolism Journal 2023;47(6):826 View
  66. Leaning I, Ikani N, Savage H, Leow A, Beckmann C, Ruhé H, Marquand A. From smartphone data to clinically relevant predictions: A systematic review of digital phenotyping methods in depression. Neuroscience & Biobehavioral Reviews 2024;158:105541 View
  67. Lee D, Jung I, Park S, Yu J, Seo J, Kim K, Kim N, Yoo H, Kim S, Choi K, Baik S, Kim N. Attention to Innate Circadian Rhythm and the Impact of Its Disruption on Diabetes. Diabetes & Metabolism Journal 2024;48(1):37 View
  68. Bryan A, Heinz M, Salzhauer A, Price G, Tlachac M, Jacobson N. Behind the Screen: A Narrative Review on the Translational Capacity of Passive Sensing for Mental Health Assessment. Biomedical Materials & Devices 2024;2(2):778 View
  69. Cho C, Son S, Lee Y, Jeong J, Yeom J, Seo J, Moon E, Baek J, Park D, Kim S, Ha T, Cha B, Kang H, Ahn Y, An H, Lee H. Identifying predictive factors for mood recurrence in early-onset major mood disorders: A 4-year, multicenter, prospective cohort study. Psychiatry Research 2024;335:115882 View
  70. Halabi R, Mulsant B, Alda M, DeShaw A, Hintze A, Husain M, O'Donovan C, Patterson R, Ortiz A. Not missing at random: Missing data are associated with clinical status and trajectories in an electronic monitoring longitudinal study of bipolar disorder. Journal of Psychiatric Research 2024;174:326 View
  71. Huang J, Wang H, Wu Q, Yin J, Zhou H, He Y. Clinical research on neurological and psychiatric diagnosis and monitoring using wearable devices: A literature review. Interdisciplinary Medicine 2024;2(4) View
  72. Bidargaddi N, Leibbrandt R, Paget T, Verjans J, Looi J, Lipschitz J. Remote sensing mental health: A systematic review of factors essential to clinical translation from validation research. DIGITAL HEALTH 2024;10 View
  73. Langholm C, Breitinger S, Gray L, Goes F, Walker A, Xiong A, Stopel C, Zandi P, Frye M, Torous J. Using data processing to understand inconsistency in smartphone behavior among patients with serious mental illness: Results of a digital phenotyping biomarker study. Biomarkers in Neuropsychiatry 2024;11:100105 View
  74. Yeom J, Yoon Y, Seo J, Cho C, Lee T, Lee J, Jeon S, Kim L, Lee H. Daily Self-Monitoring and Feedback of Circadian Rhythm Measures in Major Depression and Bipolar Disorder Using Wearable Devices and Smartphones–The Circadian Rhythm for Mood (CRM®) Trial Protocol: A Randomized Sham Controlled Double-Blind Trial. Psychiatry Investigation 2024;21(8):918 View
  75. dos Santos M, Heckler W, Bavaresco R, Barbosa J. Machine learning applied to digital phenotyping: A systematic literature review and taxonomy. Computers in Human Behavior 2024;161:108422 View
  76. Tonon A, Nexha A, Mendonça da Silva M, Gomes F, Hidalgo M, Frey B. Sleep and circadian disruption in bipolar disorders: From psychopathology to digital phenotyping in clinical practice. Psychiatry and Clinical Neurosciences 2024;78(11):654 View
  77. Loosen A, Kato A, Gu X. Revisiting the role of computational neuroimaging in the era of integrative neuroscience. Neuropsychopharmacology 2024;50(1):103 View
  78. Walschots Q, Zarchev M, Unkel M, Kamperman A. Using Wearable Technology to Detect, Monitor, and Predict Major Depressive Disorder—A Scoping Review and Introductory Text for Clinical Professionals. Algorithms 2024;17(9):408 View
  79. Jilka S, Giacco D. Digital phenotyping: how it could change mental health care and why we should all keep up. Journal of Mental Health 2024;33(4):439 View
  80. Li R, Huang Y, Wang Y, Song C, Lai X. MRI-based deep learning for differentiating between bipolar and major depressive disorders. Psychiatry Research: Neuroimaging 2024;345:111907 View
  81. Lipschitz J, Lin S, Saghafian S, Pike C, Burdick K. Digital phenotyping in bipolar disorder: Using longitudinal Fitbit data and personalized machine learning to predict mood symptomatology. Acta Psychiatrica Scandinavica 2024 View
  82. Lim D, Jeong J, Song Y, Cho C, Yeom J, Lee T, Lee J, Lee H, Kim J. Accurately predicting mood episodes in mood disorder patients using wearable sleep and circadian rhythm features. npj Digital Medicine 2024;7(1) View

Books/Policy Documents

  1. Wang Z, Niu Z, Yang L, Cui L. Depressive Disorders: Mechanisms, Measurement and Management. View
  2. Khong J, Wang P, Gan T, Ng J, Lan Anh T, Blasiak A, Kee T, Ho D. Nanoparticles for Biomedical Applications. View
  3. Rawat T, Jain S. Data Analytics and Management. View
  4. Rebolledo M, Eiben A, Bartz-Beielstein T. Applications of Evolutionary Computation. View
  5. Anmella G, Hidalgo-Mazzei D, Vieta E. Digital Mental Health. View
  6. Volpe U, Elkholy H, Gargot T, Pinto da Costa M, Orsolini L. Tasman’s Psychiatry. View
  7. Alslaity A, Chan G, Wilson R, Orji R. Pervasive Computing Technologies for Healthcare. View
  8. Emmert K, Maetzler W. Gerontechnology. A Clinical Perspective. View
  9. Lex C, Meyer T. Clinical Textbook of Mood Disorders. View
  10. Volpe U, Elkholy H, Gargot T, Pinto da Costa M, Orsolini L. Tasman’s Psychiatry. View
  11. Cho C, Lee H, Kim Y. Recent Advances and Challenges in the Treatment of Major Depressive Disorder. View