Published on in Vol 20, No 7 (2018): July
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/9775, first published
.
Journals
- Liu G, Henson P, Keshavan M, Pekka-Onnela J, Torous J. Assessing the potential of longitudinal smartphone based cognitive assessment in schizophrenia: A naturalistic pilot study. Schizophrenia Research: Cognition 2019;17:100144 View
- Allen S. Artificial Intelligence and the Future of Psychiatry. IEEE Pulse 2020;11(3):2 View
- Potier R. The Digital Phenotyping Project: A Psychoanalytical and Network Theory Perspective. Frontiers in Psychology 2020;11 View
- Birnbaum M, Ernala S, Rizvi A, Arenare E, R. Van Meter A, De Choudhury M, Kane J. Detecting relapse in youth with psychotic disorders utilizing patient-generated and patient-contributed digital data from Facebook. npj Schizophrenia 2019;5(1) View
- Seppälä J, De Vita I, Jämsä T, Miettunen J, Isohanni M, Rubinstein K, Feldman Y, Grasa E, Corripio I, Berdun J, D'Amico E, Bulgheroni M. Mobile Phone and Wearable Sensor-Based mHealth Approaches for Psychiatric Disorders and Symptoms: Systematic Review. JMIR Mental Health 2019;6(2):e9819 View
- Daus H, Bloecher T, Egeler R, De Klerk R, Stork W, Backenstrass M. Development of an Emotion-Sensitive mHealth Approach for Mood-State Recognition in Bipolar Disorder. JMIR Mental Health 2020;7(7):e14267 View
- Jacobson N, Chung Y. Passive Sensing of Prediction of Moment-To-Moment Depressed Mood among Undergraduates with Clinical Levels of Depression Sample Using Smartphones. Sensors 2020;20(12):3572 View
- Mastoras R, Iakovakis D, Hadjidimitriou S, Charisis V, Kassie S, Alsaadi T, Khandoker A, Hadjileontiadis L. Touchscreen typing pattern analysis for remote detection of the depressive tendency. Scientific Reports 2019;9(1) View
- Stange J, Kleiman E, Mermelstein R, Trull T. Using ambulatory assessment to measure dynamic risk processes in affective disorders. Journal of Affective Disorders 2019;259:325 View
- Rashidisabet H, Thomas P, Ajilore O, Zulueta J, Moore R, Leow A. A systems biology approach to the digital behaviorome. Current Opinion in Systems Biology 2020;20:8 View
- Radhakrishnan K, Kim M, Burgermaster M, Brown R, Xie B, Bray M, Fournier C. The potential of digital phenotyping to advance the contributions of mobile health to self-management science. Nursing Outlook 2020;68(5):548 View
- Campbell L, Tang B, Watson W, Higgins M, Cherner M, Henry B, Moore R. Cannabis Use is Associated with Greater Total Sleep Time in Middle-Aged and Older Adults with and without HIV: A Preliminary Report Utilizing Digital Health Technologies. Cannabis 2020;3(2):180 View
- Walker W, Walton J, DeVries A, Nelson R. Circadian rhythm disruption and mental health. Translational Psychiatry 2020;10(1) View
- Victory A, Letkiewicz A, Cochran A. Digital solutions for shaping mood and behavior among individuals with mood disorders. Current Opinion in Systems Biology 2020;21:25 View
- Piau A, Wild K, Mattek N, Kaye J. Current State of Digital Biomarker Technologies for Real-Life, Home-Based Monitoring of Cognitive Function for Mild Cognitive Impairment to Mild Alzheimer Disease and Implications for Clinical Care: Systematic Review. Journal of Medical Internet Research 2019;21(8):e12785 View
- Brietzke E, Hawken E, Idzikowski M, Pong J, Kennedy S, Soares C. Integrating digital phenotyping in clinical characterization of individuals with mood disorders. Neuroscience & Biobehavioral Reviews 2019;104:223 View
- Zulueta J, Leow A, Ajilore O. Real-Time Monitoring: A Key Element in Personalized Health and Precision Health. Focus 2020;18(2):175 View
- Bidmon S, Elshiewy O, Terlutter R, Boztug Y. What Patients Value in Physicians: Analyzing Drivers of Patient Satisfaction Using Physician-Rating Website Data. Journal of Medical Internet Research 2020;22(2):e13830 View
- Purswani J, Dicker A, Champ C, Cantor M, Ohri N. Big Data From Small Devices: The Future of Smartphones in Oncology. Seminars in Radiation Oncology 2019;29(4):338 View
- Rudd B, Beidas R. Digital Mental Health: The Answer to the Global Mental Health Crisis?. JMIR Mental Health 2020;7(6):e18472 View
- Severus E, Ebner-Priemer U, Beier F, Mühlbauer E, Ritter P, Hill H, Bauer M. Ambulantes Monitoring und digitale Phänotypisierung in Diagnostik und Therapie bipolarer Erkrankungen. Der Nervenarzt 2019;90(12):1215 View
- Vesel C, Rashidisabet H, Zulueta J, Stange J, Duffecy J, Hussain F, Piscitello A, Bark J, Langenecker S, Young S, Mounts E, Omberg L, Nelson P, Moore R, Koziol D, Bourne K, Bennett C, Ajilore O, Demos A, Leow A. Effects of mood and aging on keystroke dynamics metadata and their diurnal patterns in a large open-science sample: A BiAffect iOS study. Journal of the American Medical Informatics Association 2020;27(7):1007 View
- Diamantaris M, Marcantoni F, Ioannidis S, Polakis J. The Seven Deadly Sins of the HTML5 WebAPI. ACM Transactions on Privacy and Security 2020;23(4):1 View
- Birnbaum M, Kulkarni P, Van Meter A, Chen V, Rizvi A, Arenare E, De Choudhury M, Kane J. Utilizing Machine Learning on Internet Search Activity to Support the Diagnostic Process and Relapse Detection in Young Individuals With Early Psychosis: Feasibility Study. JMIR Mental Health 2020;7(9):e19348 View
- Asensio-Cuesta S, Sánchez-García Á, Conejero J, Saez C, Rivero-Rodriguez A, García-Gómez J. Smartphone Sensors for Monitoring Cancer-Related Quality of Life: App Design, EORTC QLQ-C30 Mapping and Feasibility Study in Healthy Subjects. International Journal of Environmental Research and Public Health 2019;16(3):461 View
- van der Watt A, Odendaal W, Louw K, Seedat S. Distant mood monitoring for depressive and bipolar disorders: a systematic review. BMC Psychiatry 2020;20(1) View
- Antosik-Wójcińska A, Dominiak M, Chojnacka M, Kaczmarek-Majer K, Opara K, Radziszewska W, Olwert A, Święcicki Ł. Smartphone as a monitoring tool for bipolar disorder: a systematic review including data analysis, machine learning algorithms and predictive modelling. International Journal of Medical Informatics 2020;138:104131 View
- Mouchabac S, Adrien V, Falala-Séchet C, Bonnot O, Maatoug R, Millet B, Peretti C, Bourla A, Ferreri F. Psychiatric Advance Directives and Artificial Intelligence: A Conceptual Framework for Theoretical and Ethical Principles. Frontiers in Psychiatry 2021;11 View
- Zulueta J, Ajilore O. Beyond non-inferior: how telepsychiatry technologies can lead to superior care. International Review of Psychiatry 2021;33(4):366 View
- Burgess-Hull A, Epstein D. Ambulatory Assessment Methods to Examine Momentary State-Based Predictors of Opioid Use Behaviors. Current Addiction Reports 2021;8(1):122 View
- Sagorac Gruichich T, David Gomez J, Zayas‐Cabán G, McInnis M, Cochran A. A digital self‐report survey of mood for bipolar disorder. Bipolar Disorders 2021;23(8):810 View
- Druijff‐van de Woestijne G, McConchie H, de Kort Y, Licitra G, Zhang C, Overeem S, Smolders K. Behavioural biometrics: Using smartphone keyboard activity as a proxy for rest–activity patterns. Journal of Sleep Research 2021;30(5) View
- Jayakumar P, Lin E, Galea V, Mathew A, Panda N, Vetter I, Haynes A. Digital Phenotyping and Patient-Generated Health Data for Outcome Measurement in Surgical Care: A Scoping Review. Journal of Personalized Medicine 2020;10(4):282 View
- Hilty D, Armstrong C, Luxton D, Gentry M, Krupinski E. A Scoping Review of Sensors, Wearables, and Remote Monitoring For Behavioral Health: Uses, Outcomes, Clinical Competencies, and Research Directions. Journal of Technology in Behavioral Science 2021;6(2):278 View
- Orsolini L, Fiorani M, Volpe U. Digital Phenotyping in Bipolar Disorder: Which Integration with Clinical Endophenotypes and Biomarkers?. International Journal of Molecular Sciences 2020;21(20):7684 View
- Lhaksampa T, Nanavati J, Chisolm M, Miller L. Patient electronic communication data in clinical care: what is known and what is needed. International Review of Psychiatry 2021;33(4):372 View
- Davidson B. The crossroads of digital phenotyping. General Hospital Psychiatry 2022;74:126 View
- Kohli M, Moore D, Moore R. Using health technology to capture digital phenotyping data in HIV-associated neurocognitive disorders. AIDS 2021;35(1):15 View
- Opoku Asare K, Terhorst Y, Vega J, Peltonen E, Lagerspetz E, Ferreira D. Predicting Depression From Smartphone Behavioral Markers Using Machine Learning Methods, Hyperparameter Optimization, and Feature Importance Analysis: Exploratory Study. JMIR mHealth and uHealth 2021;9(7):e26540 View
- Vlisides-Henry R, Gao M, Thomas L, Kaliush P, Conradt E, Crowell S. Digital Phenotyping of Emotion Dysregulation Across Lifespan Transitions to Better Understand Psychopathology Risk. Frontiers in Psychiatry 2021;12 View
- Schueller S, Neary M, Lai J, Epstein D. Understanding People’s Use of and Perspectives on Mood-Tracking Apps: Interview Study. JMIR Mental Health 2021;8(8):e29368 View
- Beierle F, Schobel J, Vogel C, Allgaier J, Mulansky L, Haug F, Haug J, Schlee W, Holfelder M, Stach M, Schickler M, Baumeister H, Cohrdes C, Deckert J, Deserno L, Edler J, Eichner F, Greger H, Hein G, Heuschmann P, John D, Kestler H, Krefting D, Langguth B, Meybohm P, Probst T, Reichert M, Romanos M, Störk S, Terhorst Y, Weiß M, Pryss R. Corona Health—A Study- and Sensor-Based Mobile App Platform Exploring Aspects of the COVID-19 Pandemic. International Journal of Environmental Research and Public Health 2021;18(14):7395 View
- Martinez-Martin N, Greely H, Cho M. Ethical Development of Digital Phenotyping Tools for Mental Health Applications: Delphi Study. JMIR mHealth and uHealth 2021;9(7):e27343 View
- Maatoug R, Oudin A, Adrien V, Saudreau B, Bonnot O, Millet B, Ferreri F, Mouchabac S, Bourla A. Digital phenotype of mood disorders: A conceptual and critical review. Frontiers in Psychiatry 2022;13 View
- Chen M, Leow A, Ross M, DeLuca J, Chiaravalloti N, Costa S, Genova H, Weber E, Hussain F, Demos A. Associations between smartphone keystroke dynamics and cognition in MS. DIGITAL HEALTH 2022;8:205520762211432 View
- Baumeister H, Garatva P, Pryss R, Ropinski T, Montag C. Digitale Phänotypisierung in der Psychologie – ein Quantensprung in der psychologischen Forschung?. Psychologische Rundschau 2023;74(2):89 View
- Hampel H, Gao P, Cummings J, Toschi N, Thompson P, Hu Y, Cho M, Vergallo A. The foundation and architecture of precision medicine in neurology and psychiatry. Trends in Neurosciences 2023;46(3):176 View
- Nisenson M, Lin V, Gansner M. Digital Phenotyping in Child and Adolescent Psychiatry: A Perspective. Harvard Review of Psychiatry 2021;29(6):401 View
- Opoku Asare K, Moshe I, Terhorst Y, Vega J, Hosio S, Baumeister H, Pulkki-Råback L, Ferreira D. Mood ratings and digital biomarkers from smartphone and wearable data differentiates and predicts depression status: A longitudinal data analysis. Pervasive and Mobile Computing 2022;83:101621 View
- Bougeard A, Guay Hottin1 R, Houde V, Jean T, Piront T, Potvin S, Bernard P, Tourjman V, De Benedictis L, Orban P. Le phénotypage digital pour une pratique clinique en santé mentale mieux informée. Santé mentale au Québec 2021;46(1):135 View
- Bennett C, Ross M, Baek E, Kim D, Leow A. Predicting clinically relevant changes in bipolar disorder outside the clinic walls based on pervasive technology interactions via smartphone typing dynamics. Pervasive and Mobile Computing 2022;83:101598 View
- Kasyanov E, Kovaleva Y, Mazo G. Digital phenotyping as a new method of screening for mental disorders. V.M. BEKHTEREV REVIEW OF PSYCHIATRY AND MEDICAL PSYCHOLOGY 2022;56(4):96 View
- Khazanov G, Forbes C, Dunn B, Thase M. Addressing anhedonia to increase depression treatment engagement. British Journal of Clinical Psychology 2022;61(2):255 View
- Alfalahi H, Khandoker A, Chowdhury N, Iakovakis D, Dias S, Chaudhuri K, Hadjileontiadis L. Diagnostic accuracy of keystroke dynamics as digital biomarkers for fine motor decline in neuropsychiatric disorders: a systematic review and meta-analysis. Scientific Reports 2022;12(1) View
- Hillis J, Bizzo B. Use of Artificial Intelligence in Clinical Neurology. Seminars in Neurology 2022;42(01):039 View
- Nguyen V, Lu N, Kane J, Birnbaum M, De Choudhury M. Cross-Platform Detection of Psychiatric Hospitalization via Social Media Data: Comparison Study. JMIR Mental Health 2022;9(12):e39747 View
- van Berkel N, D’Alfonso S, Kurnia Susanto R, Ferreira D, Kostakos V. AWARE-Light: a smartphone tool for experience sampling and digital phenotyping. Personal and Ubiquitous Computing 2023;27(2):435 View
- Yu J, Chiu C, Wang Y, Dzubur E, Lu W, Hoffman J. A Machine Learning Approach to Passively Informed Prediction of Mental Health Risk in People with Diabetes: Retrospective Case-Control Analysis. Journal of Medical Internet Research 2021;23(8):e27709 View
- Davidson B, Ellis D, Stachl C, Taylor P, Joinson A. Measurement practices exacerbate the generalizability crisis: Novel digital measures can help. Behavioral and Brain Sciences 2022;45 View
- De La Fabián R, Jiménez-Molina Á, Pizarro Obaid F. A critical analysis of digital phenotyping and the neuro-digital complex in psychiatry. Big Data & Society 2023;10(1) View
- Fukazawa Y. Estimating Mental Health Using Human-generated Big Data and Machine Learning. The Brain & Neural Networks 2022;29(2):78 View
- Saccaro L, Amatori G, Cappelli A, Mazziotti R, Dell'Osso L, Rutigliano G. Portable technologies for digital phenotyping of bipolar disorder: A systematic review. Journal of Affective Disorders 2021;295:323 View
- Hoeijmakers A, Licitra G, Meijer K, Lam K, Molenaar P, Strijbis E, Killestein J. Disease severity classification using passively collected smartphone-based keystroke dynamics within multiple sclerosis. Scientific Reports 2023;13(1) View
- Chia A, Zhang M. Digital phenotyping in psychiatry: A scoping review. Technology and Health Care 2022;30(6):1331 View
- Van Assche E, Antoni Ramos-Quiroga J, Pariante C, Sforzini L, Young A, Flossbach Y, Gold S, Hoogendijk W, Baune B, Maron E. Digital tools for the assessment of pharmacological treatment for depressive disorder: State of the art. European Neuropsychopharmacology 2022;60:100 View
- Zhang D, Lim J, Zhou L, Dahl A. Breaking the Data Value-Privacy Paradox in Mobile Mental Health Systems Through User-Centered Privacy Protection: A Web-Based Survey Study. JMIR Mental Health 2021;8(12):e31633 View
- DAUS H, FINK-LAMOTTE J, BACKENSTRASS M. Mobile-based, emotion-sensitive video diaries and ambulatory third-party assessments as indicators of mood states in bipolar disorder. Minerva Psychiatry 2022;63(4) View
- Orr M, MacLeod L, Bagnell A, McGrath P, Wozney L, Meier S. The comfort of adolescent patients and their parents with mobile sensing and digital phenotyping. Computers in Human Behavior 2023;140:107603 View
- Abdul Rashid N, Martanto W, Yang Z, Wang X, Heaukulani C, Vouk N, Buddhika T, Wei Y, Verma S, Tang C, Morris R, Lee J. Evaluating the utility of digital phenotyping to predict health outcomes in schizophrenia: protocol for the HOPE-S observational study. BMJ Open 2021;11(10):e046552 View
- Liu T, Meyerhoff J, Eichstaedt J, Karr C, Kaiser S, Kording K, Mohr D, Ungar L. The relationship between text message sentiment and self-reported depression. Journal of Affective Disorders 2022;302:7 View
- Chen Z, Kulkarni P, Galatzer-Levy I, Bigio B, Nasca C, Zhang Y. Modern views of machine learning for precision psychiatry. Patterns 2022;3(11):100602 View
- Fonseka L, Woo B. Wearables in Schizophrenia: Update on Current and Future Clinical Applications. JMIR mHealth and uHealth 2022;10(4):e35600 View
- Zarate D, Stavropoulos V, Ball M, de Sena Collier G, Jacobson N. Exploring the digital footprint of depression: a PRISMA systematic literature review of the empirical evidence. BMC Psychiatry 2022;22(1) View
- Vega J, Li M, Aguillera K, Goel N, Joshi E, Khandekar K, Durica K, Kunta A, Low C. Reproducible Analysis Pipeline for Data Streams: Open-Source Software to Process Data Collected With Mobile Devices. Frontiers in Digital Health 2021;3 View
- Yang X, Knights J, Bangieva V, Kambhampati V. Association Between the Severity of Depressive Symptoms and Human-Smartphone Interactions: Longitudinal Study. JMIR Formative Research 2023;7:e42935 View
- Potier R. Revue critique sur le potentiel du numérique dans la recherche en psychopathologie : un point de vue psychanalytique. L'Évolution Psychiatrique 2022;87(4):729 View
- Montag C, Dagum P, Hall B, Elhai J. How the study of digital footprints can supplement research in behavioral genetics and molecular psychology. Molecular Psychology: Brain, Behavior, and Society 2022;1:2 View
- Chen M, Cherian C, Elenjickal K, Rafizadeh C, Ross M, Leow A, DeLuca J. Real-time associations among MS symptoms and cognitive dysfunction using ecological momentary assessment. Frontiers in Medicine 2023;9 View
- Lam K, Twose J, Lissenberg-Witte B, Licitra G, Meijer K, Uitdehaag B, De Groot V, Killestein J. The Use of Smartphone Keystroke Dynamics to Passively Monitor Upper Limb and Cognitive Function in Multiple Sclerosis: Longitudinal Analysis. Journal of Medical Internet Research 2022;24(11):e37614 View
- Ross M, Demos A, Zulueta J, Piscitello A, Langenecker S, McInnis M, Ajilore O, Nelson P, Ryan K, Leow A. Naturalistic smartphone keyboard typing reflects processing speed and executive function. Brain and Behavior 2021;11(11) View
- Winkler T, Büscher R, Larsen M, Kwon S, Torous J, Firth J, Sander L. Passive Sensing in the Prediction of Suicidal Thoughts and Behaviors: Protocol for a Systematic Review. JMIR Research Protocols 2022;11(11):e42146 View
- Bennett C, Ross M, Baek E, Kim D, Leow A. Smartphone accelerometer data as a proxy for clinical data in modeling of bipolar disorder symptom trajectory. npj Digital Medicine 2022;5(1) View
- Bilal A, Fransson E, Bränn E, Eriksson A, Zhong M, Gidén K, Elofsson U, Axfors C, Skalkidou A, Papadopoulos F. Predicting perinatal health outcomes using smartphone-based digital phenotyping and machine learning in a prospective Swedish cohort (Mom2B): study protocol. BMJ Open 2022;12(4):e059033 View
- Block V, Bove R, Nourbakhsh B. The Role of Remote Monitoring in Evaluating Fatigue in Multiple Sclerosis: A Review. Frontiers in Neurology 2022;13 View
- Hackett K, Giovannetti T. Capturing Cognitive Aging in Vivo: Application of a Neuropsychological Framework for Emerging Digital Tools. JMIR Aging 2022;5(3):e38130 View
- Ortiz A, Maslej M, Husain M, Daskalakis Z, Mulsant B. Apps and gaps in bipolar disorder: A systematic review on electronic monitoring for episode prediction. Journal of Affective Disorders 2021;295:1190 View
- Kalinich M, Ebrahim S, Hays R, Melcher J, Vaidyam A, Torous J. Applying machine learning to smartphone based cognitive and sleep assessments in schizophrenia. Schizophrenia Research: Cognition 2022;27:100216 View
- Braund T, O’Dea B, Bal D, Maston K, Larsen M, Werner-Seidler A, Tillman G, Christensen H. Associations Between Smartphone Keystroke Metadata and Mental Health Symptoms in Adolescents: Findings From the Future Proofing Study. JMIR Mental Health 2023;10:e44986 View
- Wetherell M, Lau S, Maxion R. The effect of socially evaluated multitasking stress on typing rhythms. Psychophysiology 2023;60(8) View
- Cochran A, Maronge J, Victory A, Hoel S, McInnis M, Thomas E. Mobile Acceptance and Commitment Therapy in Bipolar Disorder: Microrandomized Trial. JMIR Mental Health 2023;10:e43164 View
- Ortiz A, Park Y, Gonzalez-Torres C, Alda M, Blumberger D, Burnett R, Husain M, Sanches M, Mulsant B. Predictors of adherence to electronic self-monitoring in patients with bipolar disorder: a contactless study using Growth Mixture Models. International Journal of Bipolar Disorders 2023;11(1) View
- Nguyen T, Leow A, Ajilore O. A Review on Smartphone Keystroke Dynamics as a Digital Biomarker for Understanding Neurocognitive Functioning. Brain Sciences 2023;13(6):959 View
- Oudin A, Maatoug R, Bourla A, Ferreri F, Bonnot O, Millet B, Schoeller F, Mouchabac S, Adrien V. Digital Phenotyping: Data-Driven Psychiatry to Redefine Mental Health. Journal of Medical Internet Research 2023;25:e44502 View
- Heydarian S, Shakiba A, Rostam Niakan Kalhori S. The Minimum Feature Set for Designing Mobile Apps to Support Bipolar Disorder-Affected Patients: Proposal of Essential Functions and Requirements. Journal of Healthcare Informatics Research 2023;7(2):254 View
- Wu C, Hsu J, Liou C, Su H, Lin E, Chen P. Automatic Bipolar Disorder Assessment Using Machine Learning With Smartphone-Based Digital Phenotyping. IEEE Access 2023;11:121845 View
- Neznanov N, Vasileva A. Digitalization in mental health care. New opportunities for specialists and patients. National Health Care (Russia) 2023;4(2):15 View
- Lenze E, Torous J, Arean P. Digital and precision clinical trials: innovations for testing mental health medications, devices, and psychosocial treatments. Neuropsychopharmacology 2024;49(1):205 View
- Lim S, Kim C, Cho B, Choi S, Lee H, Jang D. Investigation of daily patterns for smartphone keystroke dynamics based on loneliness and social isolation. Biomedical Engineering Letters 2024;14(2):235 View
- Kim S, Bennett C, Henkel Z, Lee J, Stanojevic C, Baugus K, Bethel C, Piatt J, Šabanović S. Generative replay for multi-class modeling of human activities via sensor data from in-home robotic companion pets. Intelligent Service Robotics 2024;17(2):277 View
- Funkhouser C, Trivedi E, Li L, Helgren F, Zhang E, Sritharan A, Cherner R, Pagliaccio D, Durham K, Kyler M, Tse T, Buchanan S, Allen N, Shankman S, Auerbach R. Detecting adolescent depression through passive monitoring of linguistic markers in smartphone communication. Journal of Child Psychology and Psychiatry 2024;65(7):932 View
- Stamatis C, Meyerhoff J, Meng Y, Lin Z, Cho Y, Liu T, Karr C, Liu T, Curtis B, Ungar L, Mohr D. Differential temporal utility of passively sensed smartphone features for depression and anxiety symptom prediction: a longitudinal cohort study. npj Mental Health Research 2024;3(1) View
- Knol L, Nagpal A, Leaning I, Idda E, Hussain F, Ning E, Eisenlohr-Moul T, Beckmann C, Marquand A, Leow A. Smartphone keyboard dynamics predict affect in suicidal ideation. npj Digital Medicine 2024;7(1) View
- D’Alfonso S, Coghlan S, Schmidt S, Mangelsdorf S. Ethical Dimensions of Digital Phenotyping Within the Context of Mental Healthcare. Journal of Technology in Behavioral Science 2024 View
- Siegel J, Cohen A, Szabo S, Tomioka S, Opler M, Kirkpatrick B, Hopkins S. Enrichment using speech latencies improves treatment effect size in a clinical trial of bipolar depression. Psychiatry Research 2024;340:116105 View
- Jang M, Cho Y, Kim D, Park S, Park S, Hur J, Kim M, Cho K, Lee C, Kwon J. Associations between keystroke and stylus metadata and depressive symptoms in adolescents. Psychological Medicine 2024;54(11):3109 View
- Hackett K, Xu S, McKniff M, Paglia L, Barnett I, Giovannetti T. Mobility-Based Smartphone Digital Phenotypes Unobtrusively Capture Everyday Cognition, Mood, and Community Life-Space in Older Adults: A Pilot Study (Preprint). JMIR Human Factors 2024 View
- Liu Q, Ning E, Ross M, Cladek A, Kabir S, Barve A, Kennelly E, Hussain F, Duffecy J, Langenecker S, Nguyen T, Tulabandhula T, Zulueta J, Demos A, Leow A, Ajilore O. Digital Phenotypes of Mobile Keyboard Backspace Rates and Their Associations With Symptoms of Mood Disorder: Algorithm Development and Validation. Journal of Medical Internet Research 2024;26:e51269 View
Books/Policy Documents
- Hussain F, Stange J, Langenecker S, McInnis M, Zulueta J, Piscitello A, Cao B, Huang H, Yu P, Nelson P, Ajilore O, Leow A. Digital Phenotyping and Mobile Sensing. View
- Chentsova Dutton Y, Lyons S. Emotion Measurement. View
- Mao S, Khalifa Y, Zhang Z, Shu K, Suri A, Bouzid Z, Sejdic E. Digital Health. View
- Hussain F, Stange J, Langenecker S, McInnis M, Zulueta J, Piscitello A, Ross M, Demos A, Vesel C, Rashidisabet H, Cao B, Huang H, Yu P, Nelson P, Ajilore O, Leow A. Digital Phenotyping and Mobile Sensing. View
- . The Cambridge Handbook of Community Psychology. View
- Tugade M, Tan T, Wachsmuth L, Bradley E. The Cambridge Handbook of Community Psychology. View
- Carmi L, Abbas A, Schultebraucks K, Galatzer-Levy I. Mental Health in a Digital World. View
- El rhatassi F, El Ghali B, Daoudi N. Proceedings of the 6th International Conference on Big Data and Internet of Things. View
- Volpe U, Elkholy H, Gargot T, Pinto da Costa M, Orsolini L. Tasman’s Psychiatry. View
- Lee Y, Pham V, Zhang J, Chung T. Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications. View
- Bodenstein K, Paquin V, Sekhon K, Lesage M, Cinalioglu K, Rej S, Vahia I, Sekhon H. Biomarkers in Neuropsychiatry. View
- Volpe U, Elkholy H, Gargot T, Pinto da Costa M, Orsolini L. Tasman’s Psychiatry. View