Published on in Vol 20, No 6 (2018): June

Detecting Suicidal Ideation on Forums: Proof-of-Concept Study

Detecting Suicidal Ideation on Forums: Proof-of-Concept Study

Detecting Suicidal Ideation on Forums: Proof-of-Concept Study

Journals

  1. Oexle N, Niederkrotenthaler T, DeLeo D. Emerging trends in suicide prevention research. Current Opinion in Psychiatry 2019;32(4):336 View
  2. Tadesse M, Lin H, Xu B, Yang L. Detection of Suicide Ideation in Social Media Forums Using Deep Learning. Algorithms 2019;13(1):7 View
  3. Zunic A, Corcoran P, Spasic I. Sentiment Analysis in Health and Well-Being: Systematic Review. JMIR Medical Informatics 2020;8(1):e16023 View
  4. Cacheda F, Fernandez D, Novoa F, Carneiro V. Early Detection of Depression: Social Network Analysis and Random Forest Techniques. Journal of Medical Internet Research 2019;21(6):e12554 View
  5. Bernert R, Hilberg A, Melia R, Kim J, Shah N, Abnousi F. Artificial Intelligence and Suicide Prevention: A Systematic Review of Machine Learning Investigations. International Journal of Environmental Research and Public Health 2020;17(16):5929 View
  6. Chancellor S, De Choudhury M. Methods in predictive techniques for mental health status on social media: a critical review. npj Digital Medicine 2020;3(1) View
  7. Shen Y, Zhang W, Chan B, Zhang Y, Meng F, Kennon E, Wu H, Luo X, Zhang X. Detecting risk of suicide attempts among Chinese medical college students using a machine learning algorithm. Journal of Affective Disorders 2020;273:18 View
  8. Strand M, Gustafsson S. Mukbang and Disordered Eating: A Netnographic Analysis of Online Eating Broadcasts. Culture, Medicine, and Psychiatry 2020;44(4):586 View
  9. Soron T, Shariful Islam S. Suicide on Facebook-the tales of unnoticed departure in Bangladesh. Global Mental Health 2020;7 View
  10. Davis B, Sedig K, Lizotte D. Archetype-Based Modeling and Search of Social Media. Big Data and Cognitive Computing 2019;3(3):44 View
  11. Fonseka T, Bhat V, Kennedy S. The utility of artificial intelligence in suicide risk prediction and the management of suicidal behaviors. Australian & New Zealand Journal of Psychiatry 2019;53(10):954 View
  12. Yao H, Rashidian S, Dong X, Duanmu H, Rosenthal R, Wang F. Detection of Suicidality Among Opioid Users on Reddit: Machine Learning–Based Approach. Journal of Medical Internet Research 2020;22(11):e15293 View
  13. Liu D, Fu Q, Wan C, Liu X, Jiang T, Liao G, Qiu X, Liu R. Suicidal Ideation Cause Extraction From Social Texts. IEEE Access 2020;8:169333 View
  14. Garg S, Raigosa A, Aiman R. Investigating differential linguistic patterns exhibited by Major Depressive Disorder (MDD) Patients and building a Long Short Term Memory Network + Convolutional Neural Network Model, Logistic Regression model, and a Multinomial Naive Bayes Classifier Algorithm to develop Spero, a hybrid app based Early-MDD diagnosis system. International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2020:114 View
  15. Forte A, Sarli G, Polidori L, Lester D, Pompili M. The Role of New Technologies to Prevent Suicide in Adolescence: A Systematic Review of the Literature. Medicina 2021;57(2):109 View
  16. Skaik R, Inkpen D. Using Social Media for Mental Health Surveillance. ACM Computing Surveys 2021;53(6):1 View
  17. Ji S, Pan S, Li X, Cambria E, Long G, Huang Z. Suicidal Ideation Detection: A Review of Machine Learning Methods and Applications. IEEE Transactions on Computational Social Systems 2021;8(1):214 View
  18. Mason A, Jang K, Morley K, Scarf D, Collings S, Riordan B. A Content Analysis of Reddit Users' Perspectives on Reasons for Not Following Through with a Suicide Attempt. Cyberpsychology, Behavior, and Social Networking 2021;24(10):642 View
  19. López-Úbeda P, Plaza-del-Arco F, Díaz-Galiano M, Martín-Valdivia M. How Successful Is Transfer Learning for Detecting Anorexia on Social Media?. Applied Sciences 2021;11(4):1838 View
  20. Cheng Q, Lui C. Applying text mining methods to suicide research. Suicide and Life-Threatening Behavior 2021;51(1):137 View
  21. S S, S. Raj J. Analysis of Deep Learning Techniques for Early Detection of Depression on Social Media Network - A Comparative Study. Journal of Trends in Computer Science and Smart Technology 2021;3(1):24 View
  22. Lekkas D, Klein R, Jacobson N. Predicting acute suicidal ideation on Instagram using ensemble machine learning models. Internet Interventions 2021;25:100424 View
  23. Arillotta D, Guirguis A, Corkery J, Scherbaum N, Schifano F. COVID-19 Pandemic Impact on Substance Misuse: A Social Media Listening, Mixed Method Analysis. Brain Sciences 2021;11(7):907 View
  24. Silveira B, Silva H, Murai F, da Silva A. Predicting user emotional tone in mental disorder online communities. Future Generation Computer Systems 2021;125:641 View
  25. Xu X. Detecting Suicide Ideation in the Online Environment: A Survey of Methods and Challenges. IEEE Transactions on Computational Social Systems 2022;9(3):679 View
  26. Haque R, Islam N, Islam M, Ahsan M. A Comparative Analysis on Suicidal Ideation Detection Using NLP, Machine, and Deep Learning. Technologies 2022;10(3):57 View
  27. Zhang T, Schoene A, Ji S, Ananiadou S. Natural language processing applied to mental illness detection: a narrative review. npj Digital Medicine 2022;5(1) View
  28. Ungless E, Ross B, Belle V. Potential Pitfalls With Automatic Sentiment Analysis: The Example of Queerphobic Bias. Social Science Computer Review 2023;41(6):2211 View
  29. Fukazawa Y. Estimating Mental Health Using Human-generated Big Data and Machine Learning. The Brain & Neural Networks 2022;29(2):78 View
  30. Garg M. Mental Health Analysis in Social Media Posts: A Survey. Archives of Computational Methods in Engineering 2023;30(3):1819 View
  31. Tejaswini V, Sathya Babu K, Sahoo B. Depression Detection from Social Media Text Analysis using Natural Language Processing Techniques and Hybrid Deep Learning Model. ACM Transactions on Asian and Low-Resource Language Information Processing 2024;23(1):1 View
  32. Yeskuatov E, Chua S, Foo L. Leveraging Reddit for Suicidal Ideation Detection: A Review of Machine Learning and Natural Language Processing Techniques. International Journal of Environmental Research and Public Health 2022;19(16):10347 View
  33. Chancellor S, Sumner S, David-Ferdon C, Ahmad T, De Choudhury M. Suicide Risk and Protective Factors in Online Support Forum Posts: Annotation Scheme Development and Validation Study. JMIR Mental Health 2021;8(11):e24471 View
  34. Huang Y, Zhu C, Feng Y, Ji Y, Song J, Wang K, Yu F. Comparison of three machine learning models to predict suicidal ideation and depression among Chinese adolescents: A cross-sectional study. Journal of Affective Disorders 2022;319:221 View
  35. Wang R, Yang B, Ma Y, Wang P, Yu Q, Zong X, Huang Z, Ma S, Hu L, Hwang K, Liu Z. Medical-Level Suicide Risk Analysis: A Novel Standard and Evaluation Model. IEEE Internet of Things Journal 2021;8(23):16825 View
  36. Homan S, Gabi M, Klee N, Bachmann S, Moser A, Duri' M, Michel S, Bertram A, Maatz A, Seiler G, Stark E, Kleim B. Linguistic features of suicidal thoughts and behaviors: A systematic review. Clinical Psychology Review 2022;95:102161 View
  37. Renjith S, Abraham A, Jyothi S, Chandran L, Thomson J. An ensemble deep learning technique for detecting suicidal ideation from posts in social media platforms. Journal of King Saud University - Computer and Information Sciences 2022;34(10):9564 View
  38. Kodati D, Tene R. Identifying suicidal emotions on social media through transformer-based deep learning. Applied Intelligence 2023;53(10):11885 View
  39. Cao X, Liu X. Artificial intelligence-assisted psychosis risk screening in adolescents: Practices and challenges. World Journal of Psychiatry 2022;12(10):1287 View
  40. Liu J, Shi M, Jiang H. Detecting Suicidal Ideation in Social Media: An Ensemble Method Based on Feature Fusion. International Journal of Environmental Research and Public Health 2022;19(13):8197 View
  41. Zhang T, Yang K, Ji S, Ananiadou S. Emotion fusion for mental illness detection from social media: A survey. Information Fusion 2023;92:231 View
  42. Mandryk R, Birk M, Vedress S, Wiley K, Reid E, Berger P, Frommel J. Remote Assessment of Depression Using Digital Biomarkers From Cognitive Tasks. Frontiers in Psychology 2021;12 View
  43. Ptaszynski M, Zasko-Zielinska M, Marcinczuk M, Leliwa G, Fortuna M, Soliwoda K, Dziublewska I, Hubert O, Skrzek P, Piesiewicz J, Karbowska P, Dowgiallo M, Eronen J, Tempska P, Brochocki M, Godny M, Wroczynski M. Looking for Razors and Needles in a Haystack: Multifaceted Analysis of Suicidal Declarations on Social Media—A Pragmalinguistic Approach. International Journal of Environmental Research and Public Health 2021;18(22):11759 View
  44. Gupta D, Markale A, Kulkarni R. Mental Health Quantifier. International Journal of Engineering and Advanced Technology 2021;10(5):187 View
  45. Gu Y, Chen D, Liu X. Suicide Possibility Scale Detection via Sina Weibo Analytics: Preliminary Results. International Journal of Environmental Research and Public Health 2022;20(1):466 View
  46. Smrke U, Mlakar I, Lin S, Musil B, Plohl N. Language, Speech, and Facial Expression Features for Artificial Intelligence–Based Detection of Cancer Survivors’ Depression: Scoping Meta-Review. JMIR Mental Health 2021;8(12):e30439 View
  47. Aldhyani T, Alsubari S, Alshebami A, Alkahtani H, Ahmed Z. Detecting and Analyzing Suicidal Ideation on Social Media Using Deep Learning and Machine Learning Models. International Journal of Environmental Research and Public Health 2022;19(19):12635 View
  48. Amanat A, Rizwan M, Javed A, Abdelhaq M, Alsaqour R, Pandya S, Uddin M. Deep Learning for Depression Detection from Textual Data. Electronics 2022;11(5):676 View
  49. Sami Khafaga D, Auvdaiappan M, Deepa K, Abouhawwash M, Khalid Karim F. Deep Learning for Depression Detection Using Twitter Data. Intelligent Automation & Soft Computing 2023;36(2):1301 View
  50. Rabani S, Ud Din Khanday A, Khan Q, Hajam U, Imran A, Kastrati Z. Detecting suicidality on social media: Machine learning at rescue. Egyptian Informatics Journal 2023;24(2):291 View
  51. Levkovich I, Elyoseph Z. Suicide Risk Assessments Through the Eyes of ChatGPT-3.5 Versus ChatGPT-4: Vignette Study. JMIR Mental Health 2023;10:e51232 View
  52. Santoso M, Suryadi J, Marchellino K, Nabiilah G, Rojali . A Comparative Analysis of Decision Tree and Support Vector Machine on Suicide Ideation Detection. Procedia Computer Science 2023;227:518 View
  53. Zhao Y, Liu D, Wan C, Liu X, Nie J, Liu J. JMS-QA: A Joint Hierarchical Architecture for Mental Health Question Answering. IEEE/ACM Transactions on Audio, Speech, and Language Processing 2024;32:352 View
  54. Liu J, Hu S, Mehraliyev F, Zhou H, Yu Y, Yang L. Recognizing emotions in restaurant online reviews: a hybrid model integrating deep learning and a sentiment lexicon. International Journal of Contemporary Hospitality Management 2024;36(9):2955 View
  55. Elzamzamy K, Owaisi R, Elayan H, Elsaid T. Muslim experiences and Islamic perspectives on suicide: a qualitative analysis of fatwa inquiries. International Review of Psychiatry 2024;36(4-5):543 View
  56. Kancharapu R, Ayyagari S. Suicidal ideation prediction based on social media posts using a GAN-infused deep learning framework with genetic optimization and word embedding fusion. International Journal of Information Technology 2024;16(4):2577 View
  57. Gorai J, Shaw D. A BERT-encoded ensembled CNN model for suicide risk identification in social media posts. Neural Computing and Applications 2024;36(18):10955 View
  58. Zhu J, Jin R, Kenne D, Phan N, Ku W. User Dynamics and Thematic Exploration in r/Depression During the COVID-19 Pandemic: Insights From Overlapping r/SuicideWatch Users. Journal of Medical Internet Research 2024;26:e53968 View
  59. Kodati D, Tene R. Emotion mining for early suicidal threat detection on both social media and suicide notes using context dynamic masking-based transformer with deep learning. Multimedia Tools and Applications 2024 View
  60. Zhang D, Zhou L, Tao J, Zhu T, Gao G. KETCH: A Knowledge-Enhanced Transformer-Based Approach to Suicidal Ideation Detection from Social Media Content. Information Systems Research 2024 View
  61. Goel R, Digalwar M. Suicidal Thought Detection using Max Voting Ensemble Technique. Procedia Computer Science 2024;235:2587 View
  62. Qorich M, El Ouazzani R. Advanced deep learning and large language models for suicide ideation detection on social media. Progress in Artificial Intelligence 2024;13(2):135 View
  63. SHUKLA S, SINGH M. Stacked Classification Approach using Optimized Hybrid Deep Learning Model for Early Prediction of Behaviour Changes on Social Media. ACM Transactions on Asian and Low-Resource Language Information Processing 2024 View
  64. Saha D, Hossain T, Safran M, Alfarhood S, Mridha M, Che D. Ensemble of hybrid model based technique for early detecting of depression based on SVM and neural networks. Scientific Reports 2024;14(1) View
  65. Yeskuatov E, Chua S, Foo L. Detecting Suicidal Ideations in Online Forums with Textual and Psycholinguistic Features. Applied Sciences 2024;14(21):9911 View

Books/Policy Documents

  1. Andavar V, Gupta S. Bio-Inspired Algorithms and Devices for Treatment of Cognitive Diseases Using Future Technologies. View
  2. Mantilla-Saavedra C, Gutiérrez-Cárdenas J. Information Management and Big Data. View
  3. Madkar S, Maheshwari T, Merani M, Merchant R, Doshi P. Advances in Computing and Data Sciences. View
  4. Jyothi S, Renjith S. Advances in Data and Information Sciences. View
  5. Verma A, Harper M, Assi S, Al-Hamid A, Yousif M, Mustafina J, Ismail N, Al-Jumeily OBE D. Data Science and Emerging Technologies. View
  6. Denecke K. Sentiment Analysis in the Medical Domain. View
  7. Denecke K. Sentiment Analysis in the Medical Domain. View
  8. Vijaya Sri D, Sai A, Anand V, Manjusha K. Proceedings of Data Analytics and Management. View