Published on in Vol 19, No 5 (2017): May

Activity Recognition for Persons With Stroke Using Mobile Phone Technology: Toward Improved Performance in a Home Setting

Activity Recognition for Persons With Stroke Using Mobile Phone Technology: Toward Improved Performance in a Home Setting

Activity Recognition for Persons With Stroke Using Mobile Phone Technology: Toward Improved Performance in a Home Setting

Journals

  1. Negrini F, Gasperini G, Guanziroli E, Vitale J, Banfi G, Molteni F. Using an Accelerometer-Based Step Counter in Post-Stroke Patients: Validation of a Low-Cost Tool. International Journal of Environmental Research and Public Health 2020;17(9):3177 View
  2. Pradeepa S, Manjula K, Vimal S, Khan M, Chilamkurti N, Luhach A. DRFS: Detecting Risk Factor of Stroke Disease from Social Media Using Machine Learning Techniques. Neural Processing Letters 2023;55(4):3843 View
  3. Tomšič M, Domajnko B, Zajc M. The use of assistive technologies after stroke is debunking the myths about the elderly. Topics in Stroke Rehabilitation 2018;25(1):28 View
  4. Shawen N, O’Brien M, Venkatesan S, Lonini L, Simuni T, Hamilton J, Ghaffari R, Rogers J, Jayaraman A. Role of data measurement characteristics in the accurate detection of Parkinson’s disease symptoms using wearable sensors. Journal of NeuroEngineering and Rehabilitation 2020;17(1) View
  5. Reinkensmeyer D, Blackstone S, Bodine C, Brabyn J, Brienza D, Caves K, DeRuyter F, Durfee E, Fatone S, Fernie G, Gard S, Karg P, Kuiken T, Harris G, Jones M, Li Y, Maisel J, McCue M, Meade M, Mitchell H, Mitzner T, Patton J, Requejo P, Rimmer J, Rogers W, Zev Rymer W, Sanford J, Schneider L, Sliker L, Sprigle S, Steinfeld A, Steinfeld E, Vanderheiden G, Winstein C, Zhang L, Corfman T. How a diverse research ecosystem has generated new rehabilitation technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers. Journal of NeuroEngineering and Rehabilitation 2017;14(1) View
  6. Ma Y, Zhang P, Tang Y, Pan C, Li G, Liu N, Hu Y, Tang Z. Artificial intelligence: The dawn of a new era for cutting-edge technology based diagnosis and treatment for stroke. Brain Hemorrhages 2020;1(1):1 View
  7. Albert M, Sugianto A, Nickele K, Zavos P, Sindu P, Ali M, Kwon S. Hidden Markov model-based activity recognition for toddlers. Physiological Measurement 2020;41(2):025003 View
  8. Antos S, Danilovich M, Eisenstein A, Gordon K, Kording K. Smartwatches Can Detect Walker and Cane Use in Older Adults. Innovation in Aging 2019;3(1) View
  9. Liao Y, Vakanski A, Xian M, Paul D, Baker R. A review of computational approaches for evaluation of rehabilitation exercises. Computers in Biology and Medicine 2020;119:103687 View
  10. Zhang Y, Zhou Y, Zhang D, Song W. A Stroke Risk Detection: Improving Hybrid Feature Selection Method. Journal of Medical Internet Research 2019;21(4):e12437 View
  11. Lonini L, Gupta A, Deems-Dluhy S, Hoppe-Ludwig S, Kording K, Jayaraman A. Activity Recognition in Individuals Walking With Assistive Devices: The Benefits of Device-Specific Models. JMIR Rehabilitation and Assistive Technologies 2017;4(2):e8 View
  12. Shawen N, Lonini L, Mummidisetty C, Shparii I, Albert M, Kording K, Jayaraman A. Fall Detection in Individuals With Lower Limb Amputations Using Mobile Phones: Machine Learning Enhances Robustness for Real-World Applications. JMIR mHealth and uHealth 2017;5(10):e151 View
  13. Porciuncula F, Roto A, Kumar D, Davis I, Roy S, Walsh C, Awad L. Wearable Movement Sensors for Rehabilitation: A Focused Review of Technological and Clinical Advances. PM&R 2018;10(9S2) View
  14. Rast F, Labruyère R. Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments. Journal of NeuroEngineering and Rehabilitation 2020;17(1) View
  15. Luvizutto G, Silva G, Nascimento M, Sousa Santos K, Appelt P, de Moura Neto E, de Souza J, Wincker F, Miranda L, Hamamoto Filho P, de Souza L, Simões R, de Oliveira Vidal E, Bazan R. Use of artificial intelligence as an instrument of evaluation after stroke: a scoping review based on international classification of functioning, disability and health concept. Topics in Stroke Rehabilitation 2022;29(5):331 View
  16. Lonini L, Shawen N, Hoppe-Ludwig S, Deems-Dluhy S, Mummidisetty C, Eisenberg Y, Jayaraman A. Combining Accelerometer and GPS Features to Evaluate Community Mobility in Knee Ankle Foot Orthoses (KAFO) Users. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2021;29:1386 View
  17. Veerubhotla A, Krantz A, Ibironke O, Pilkar R. Wearable devices for tracking physical activity in the community after an acquired brain injury: A systematic review. PM&R 2022;14(10):1207 View
  18. Li Q, Liu Y, Zhu J, Chen Z, Liu L, Yang S, Zhu G, Zhu B, Li J, Jin R, Tao J, Chen L. Upper-Limb Motion Recognition Based on Hybrid Feature Selection: Algorithm Development and Validation. JMIR mHealth and uHealth 2021;9(9):e24402 View
  19. Celik Y, Aslan M, Sabanci K, Stuart S, Woo W, Godfrey A. Making good use of inertial data: Towards better identification of free-living mobility recognition. Gait & Posture 2022;97:S309 View
  20. Botonis O, Harari Y, Embry K, Mummidisetty C, Riopelle D, Giffhorn M, Albert M, Heike V, Jayaraman A. Wearable airbag technology and machine learned models to mitigate falls after stroke. Journal of NeuroEngineering and Rehabilitation 2022;19(1) View
  21. El Marhraoui Y, Amroun H, Boukallel M, Anastassova M, Lamy S, Bouilland S, Ammi M. Foot-to-Ground Phases Detection: A Comparison of Data Representation Formatting Methods with Respect to Adaption of Deep Learning Architectures. Computers 2022;11(5):58 View
  22. Pohl J, Ryser A, Veerbeek J, Verheyden G, Vogt J, Luft A, Easthope C. Accuracy of gait and posture classification using movement sensors in individuals with mobility impairment after stroke. Frontiers in Physiology 2022;13 View
  23. Suri A, VanSwearingen J, Dunlap P, Redfern M, Rosso A, Sejdić E. Facilitators and barriers to real-life mobility in community-dwelling older adults: a narrative review of accelerometry- and global positioning system-based studies. Aging Clinical and Experimental Research 2022;34(8):1733 View
  24. Celik Y, Aslan M, Sabanci K, Stuart S, Woo W, Godfrey A. Improving Inertial Sensor-Based Activity Recognition in Neurological Populations. Sensors 2022;22(24):9891 View
  25. Kulkarni P, Kirkham R, McNaney R. Opportunities for Smartphone Sensing in E-Health Research: A Narrative Review. Sensors 2022;22(10):3893 View
  26. Mathunny J, Karthik V, Devaraj A, Jacob J. A scoping review on recent trends in wearable sensors to analyze gait in people with stroke: From sensor placement to validation against gold-standard equipment. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 2023;237(3):309 View
  27. Suprayitno E, Kustiningsih K, Ismail S. Stroke patients' neurorehabilitation. Kontakt 2023;25(2):131 View
  28. Stock R, Gaarden A, Langørgen E. The potential of wearable technology to support stroke survivors’ motivation for home exercise – Focus group discussions with stroke survivors and physiotherapists. Physiotherapy Theory and Practice 2024;40(8):1779 View
  29. Celik Y, Moore J, Durgun M, Stuart S, Woo W, Godfrey A. Gait on the Edge: A Proposed Wearable for Continuous Real-Time Monitoring Beyond the Laboratory. IEEE Sensors Journal 2023;23(23):29656 View
  30. Rigot S, Maronati R, Lettenberger A, O'Brien M, Alamdari K, Hoppe-Ludwig S, McGuire M, Looft J, Wacek A, Cave J, Sauerbrey M, Jayaraman A. Validation of Proprietary and Novel Step-counting Algorithms for Individuals Ambulating With a Lower Limb Prosthesis. Archives of Physical Medicine and Rehabilitation 2024;105(3):546 View
  31. Lanotte F, O’Brien M, Jayaraman A. AI in Rehabilitation Medicine: Opportunities and Challenges. Annals of Rehabilitation Medicine 2023;47(6):444 View
  32. Oh Y, Choi S, Shin Y, Jeong Y, Lim J, Kim S. Investigating Activity Recognition for Hemiparetic Stroke Patients Using Wearable Sensors: A Deep Learning Approach with Data Augmentation. Sensors 2023;24(1):210 View
  33. Oh Y. Data Augmentation Techniques for Accurate Action Classification in Stroke Patients with Hemiparesis. Sensors 2024;24(5):1618 View
  34. Sengupta N, Rao A, Yan B, Palaniswami M. A Survey of Wearable Sensors and Machine Learning Algorithms for Automated Stroke Rehabilitation. IEEE Access 2024;12:36026 View
  35. Bremm R, Pavelka L, Garcia M, Mombaerts L, Krüger R, Hertel F. Sensor-Based Quantification of MDS-UPDRS III Subitems in Parkinson’s Disease Using Machine Learning. Sensors 2024;24(7):2195 View
  36. Anderson E, Lennon M, Kavanagh K, Weir N, Kernaghan D, Roper M, Dunlop E, Lapp L. Predictive Data Analytics in Telecare and Telehealth: Systematic Scoping Review. Online Journal of Public Health Informatics 2024;16:e57618 View
  37. O'Brien M, Hohl K, Lieber R, Jayaraman A. Automate, Illuminate, Predict: A Universal Framework for Integrating Wearable Sensors in Healthcare. Digital Biomarkers 2024;8(1):149 View
  38. Rentz C, Kaiser V, Jung N, Turlach B, Sahandi Far M, Peterburs J, Boltes M, Schnitzler A, Amunts K, Dukart J, Minnerop M. Sensor-Based Gait and Balance Assessment in Healthy Adults: Analysis of Short-Term Training and Sensor Placement Effects. Sensors 2024;24(17):5598 View

Books/Policy Documents

  1. Vitale J, Negrini F, Banfi G. Osteosarcopenia: Bone, Muscle and Fat Interactions. View
  2. Xiao T, Albert M. Artificial Intelligence in Brain and Mental Health: Philosophical, Ethical & Policy Issues. View