Published on in Vol 19, No 4 (2017): April

Scalable Passive Sleep Monitoring Using Mobile Phones: Opportunities and Obstacles

Scalable Passive Sleep Monitoring Using Mobile Phones: Opportunities and Obstacles

Scalable Passive Sleep Monitoring Using Mobile Phones: Opportunities and Obstacles

Journals

  1. Burgdorf A, Güthe I, Jovanović M, Kutafina E, Kohlschein C, Bitsch J, Jonas S. The mobile sleep lab app: An open-source framework for mobile sleep assessment based on consumer-grade wearable devices. Computers in Biology and Medicine 2018;103:8 View
  2. Hossain H, Ramamurthy S, Khan M, Roy N. An Active Sleep Monitoring Framework Using Wearables. ACM Transactions on Interactive Intelligent Systems 2018;8(3):1 View
  3. Beran R. Using technology to improve patient care. Medical Journal of Australia 2020;212(6):254 View
  4. Trifan A, Oliveira M, Oliveira J. Passive Sensing of Health Outcomes Through Smartphones: Systematic Review of Current Solutions and Possible Limitations. JMIR mHealth and uHealth 2019;7(8):e12649 View
  5. Turvey C, Fortney J. The Use of Telemedicine and Mobile Technology to Promote Population Health and Population Management for Psychiatric Disorders. Current Psychiatry Reports 2017;19(11) View
  6. Calvo R, Dinakar K, Picard R, Christensen H, Torous J. Toward Impactful Collaborations on Computing and Mental Health. Journal of Medical Internet Research 2018;20(2):e49 View
  7. Aledavood T, Torous J, Triana Hoyos A, Naslund J, Onnela J, Keshavan M. Smartphone-Based Tracking of Sleep in Depression, Anxiety, and Psychotic Disorders. Current Psychiatry Reports 2019;21(7) View
  8. Snyder C, Dorsey E, Atreja A. The Best Digital Biomarkers Papers of 2017. Digital Biomarkers 2018;2(2):64 View
  9. Nicholas J, Shilton K, Schueller S, Gray E, Kwasny M, Mohr D. The Role of Data Type and Recipient in Individuals’ Perspectives on Sharing Passively Collected Smartphone Data for Mental Health: Cross-Sectional Questionnaire Study. JMIR mHealth and uHealth 2019;7(4):e12578 View
  10. Purswani J, Dicker A, Champ C, Cantor M, Ohri N. Big Data From Small Devices: The Future of Smartphones in Oncology. Seminars in Radiation Oncology 2019;29(4):338 View
  11. Sano A, Chen W, Lopez-Martinez D, Taylor S, Picard R. Multimodal Ambulatory Sleep Detection Using LSTM Recurrent Neural Networks. IEEE Journal of Biomedical and Health Informatics 2019;23(4):1607 View
  12. Azimi I, Oti O, Labbaf S, Niela-Vilen H, Axelin A, Dutt N, Liljeberg P, Rahmani A. Personalized Maternal Sleep Quality Assessment: An Objective IoT-based Longitudinal Study. IEEE Access 2019;7:93433 View
  13. Thong M, Chan R, van den Hurk C, Fessele K, Tan W, Poprawski D, Fernández-Ortega P, Paterson C, Fitch M. Going beyond (electronic) patient-reported outcomes: harnessing the benefits of smart technology and ecological momentary assessment in cancer survivorship research. Supportive Care in Cancer 2021;29(1):7 View
  14. Baniasadi T, Niakan Kalhori S, Ayyoubzadeh S, Zakerabasali S, Pourmohamadkhan M. Study of challenges to utilise mobile-based health care monitoring systems: A descriptive literature review. Journal of Telemedicine and Telecare 2018;24(10):661 View
  15. Kim J, Kim T, Shin J, Choe G, Lim H, Rhee C, Lee K, Cho S. Prediction of Obstructive Sleep Apnea Based on Respiratory Sounds Recorded Between Sleep Onset and Sleep Offset. Clinical and Experimental Otorhinolaryngology 2019;12(1):72 View
  16. Zhou L, DeAlmeida D, Parmanto B. Applying a User-Centered Approach to Building a Mobile Personal Health Record App: Development and Usability Study. JMIR mHealth and uHealth 2019;7(7):e13194 View
  17. Adler D, Tseng E, Moon K, Young J, Kane J, Moss E, Mohr D, Choudhury T. Burnout and the Quantified Workplace: Tensions around Personal Sensing Interventions for Stress in Resident Physicians. Proceedings of the ACM on Human-Computer Interaction 2022;6(CSCW2):1 View
  18. Niemeijer K, Mestdagh M, Kuppens P. Tracking Subjective Sleep Quality and Mood With Mobile Sensing: Multiverse Study. Journal of Medical Internet Research 2022;24(3):e25643 View
  19. Frank E, Wallace M, Matthews M, Kendrick J, Leach J, Moore T, Aranovich G, Choudhury T, Shah N, Framroze Z, Posey G, Burgess S, Kupfer D. Personalized digital intervention for depression based on social rhythm principles adds significantly to outpatient treatment. Frontiers in Digital Health 2022;4 View
  20. Jalali N, Sahu K, Oetomo A, Morita P. Usability of Smart Home Thermostat to Evaluate the Impact of Weekdays and Seasons on Sleep Patterns and Indoor Stay: Observational Study. JMIR mHealth and uHealth 2022;10(4):e28811 View
  21. Gopalakrishnan A, Venkataraman R, Gururajan R, Zhou X, Genrich R. Mobile phone enabled mental health monitoring to enhance diagnosis for severity assessment of behaviours: a review. PeerJ Computer Science 2022;8:e1042 View
  22. Smolders K, Druijff-van de Woestijne G, Meijer K, Mcconchie H, de Kort Y. Smartphone Keyboard Interaction Monitoring as an Unobtrusive Method to Approximate Rest-Activity Patterns: Experience Sampling Study Investigating Interindividual and Metric-Specific Variations. Journal of Medical Internet Research 2023;25:e38066 View
  23. Al-Saedi A, Boeva V, Casalicchio E, Exner P. Context-Aware Edge-Based AI Models for Wireless Sensor Networks—An Overview. Sensors 2022;22(15):5544 View
  24. She X, Zhai Y, Henao R, Woods C, Chiu C, Ginsburg G, Song P, Hero A. Adaptive Multi-Channel Event Segmentation and Feature Extraction for Monitoring Health Outcomes. IEEE Transactions on Biomedical Engineering 2021;68(8):2377 View
  25. Langholm C, Byun A, Mullington J, Torous J. Monitoring sleep using smartphone data in a population of college students. npj Mental Health Research 2023;2(1) View

Books/Policy Documents

  1. Krajchevska E, Petreska N, Handjiski O, Andovska S, Ilijoski B, Lameski P, Ribarski P, Tojtovska B. ICT Innovations 2021. Digital Transformation. View
  2. Mammen P, Zakaria C, Shenoy P. Pervasive Computing Technologies for Healthcare. View