Published on in Vol 16, No 10 (2014): October
Journals
- Bouenizabila É, Krempf M. Le numérique et l’Afrique : le pari gagnant pour la santé de demain ?: Exemple du dépistage de la rétinopathie diabétique. Médecine des Maladies Métaboliques 2018;12(7):595 View
- Wazny K. Applications of crowdsourcing in health: an overview. Journal of Global Health 2018;8(1) View
- Vedula S, Malpani A, Ahmidi N, Khudanpur S, Hager G, Chen C. Task-Level vs. Segment-Level Quantitative Metrics for Surgical Skill Assessment. Journal of Surgical Education 2016;73(3):482 View
- Juusola J, Quisel T, Foschini L, Ladapo J. The Impact of an Online Crowdsourcing Diagnostic Tool on Health Care Utilization: A Case Study Using a Novel Approach to Retrospective Claims Analysis. Journal of Medical Internet Research 2016;18(6):e127 View
- Carter R, Sun J, Jump R. A Survey and Analysis of the American Public's Perceptions and Knowledge About Antibiotic Resistance. Open Forum Infectious Diseases 2016;3(3) View
- DePalma M, Rizzotti M, Branneman M. Assessing Diabetes-Relevant Data Provided by Undergraduate and Crowdsourced Web-Based Survey Participants for Honesty and Accuracy. JMIR Diabetes 2017;2(2):e11 View
- Brady C, Mudie L, Wang X, Guallar E, Friedman D. Improving Consensus Scoring of Crowdsourced Data Using the Rasch Model: Development and Refinement of a Diagnostic Instrument. Journal of Medical Internet Research 2017;19(6):e222 View
- Dai J, Lendvay T, Sorensen M. Crowdsourcing in Surgical Skills Acquisition: A Developing Technology in Surgical Education. Journal of Graduate Medical Education 2017;9(6):697 View
- Wang X, Mudie L, Baskaran M, Cheng C, Alward W, Friedman D, Brady C. Crowdsourcing to Evaluate Fundus Photographs for the Presence of Glaucoma. Journal of Glaucoma 2017;26(6):505 View
- Mortensen K, Hughes T. Comparing Amazon’s Mechanical Turk Platform to Conventional Data Collection Methods in the Health and Medical Research Literature. Journal of General Internal Medicine 2018;33(4):533 View
- Ganz M, Kondermann D, Andrulis J, Knudsen G, Maier-Hein L. Crowdsourcing for error detection in cortical surface delineations. International Journal of Computer Assisted Radiology and Surgery 2017;12(1):161 View
- Kras A, Celi L, Miller J. Accelerating ophthalmic artificial intelligence research: the role of an open access data repository. Current Opinion in Ophthalmology 2020;31(5):337 View
- Quisel T, Foschini L, Zbikowski S, Juusola J. The Association Between Medication Adherence for Chronic Conditions and Digital Health Activity Tracking: Retrospective Analysis. Journal of Medical Internet Research 2019;21(3):e11486 View
- Créquit P, Mansouri G, Benchoufi M, Vivot A, Ravaud P. Mapping of Crowdsourcing in Health: Systematic Review. Journal of Medical Internet Research 2018;20(5):e187 View
- Mudie L, Wang X, Friedman D, Brady C. Crowdsourcing and Automated Retinal Image Analysis for Diabetic Retinopathy. Current Diabetes Reports 2017;17(11) View
- Myers E, Stone W, Bernier R, Lendvay T, Comstock B, Cowan C. The diagnosis conundrum: Comparison of crowdsourced and expert assessments of toddlers with high and low risk of autism spectrum disorder. Autism Research 2018;11(12):1629 View
- Mamillapalli C, Prentice J, Garg A, Hampsey S, Bhandari R. Implementation and challenges unique to teleretinal diabetic retinal screening (TDRS) in a private practice setting in the United States. Journal of Clinical & Translational Endocrinology 2020;19:100214 View
- Wazny K. Crowdsourcing’s ten years in: A review. Journal of Global Health 2017;7(2) View
- Srinivasan S, Shetty S, Natarajan V, Sharma T, Raman R, Bhattacharya S. Development and Validation of a Diabetic Retinopathy Referral Algorithm Based on Single-Field Fundus Photography. PLOS ONE 2016;11(9):e0163108 View
- Nama N, Sampson M, Barrowman N, Sandarage R, Menon K, Macartney G, Murto K, Vaccani J, Katz S, Zemek R, Nasr A, McNally J. Crowdsourcing the Citation Screening Process for Systematic Reviews: Validation Study. Journal of Medical Internet Research 2019;21(4):e12953 View
- Wang X, Mudie L, Brady C. Crowdsourcing. Current Opinion in Ophthalmology 2016;27(3):256 View
- Cole E, Novais E, Louzada R, Waheed N. Contemporary retinal imaging techniques in diabetic retinopathy: a review. Clinical & Experimental Ophthalmology 2016;44(4):289 View
- Wang C, Han L, Stein G, Day S, Bien-Gund C, Mathews A, Ong J, Zhao P, Wei S, Walker J, Chou R, Lee A, Chen A, Bayus B, Tucker J. Crowdsourcing in health and medical research: a systematic review. Infectious Diseases of Poverty 2020;9(1) View
- Horton M, Silva P, Cavallerano J, Aiello L. Clinical Components of Telemedicine Programs for Diabetic Retinopathy. Current Diabetes Reports 2016;16(12) View
- Murchison A, Haller J, Mayro E, Hark L, Gower E, Huisingh C, Rhodes L, Friedman D, Lee D, Lam B. Reaching the Unreachable: Novel Approaches to Telemedicine Screening of Underserved Populations for Vitreoretinal Disease. Current Eye Research 2017;42(7):963 View
- Kuang J, Argo L, Stoddard G, Bray B, Zeng-Treitler Q. Assessing Pictograph Recognition: A Comparison of Crowdsourcing and Traditional Survey Approaches. Journal of Medical Internet Research 2015;17(12):e281 View
- Callaghan W, Goh J, Mohareb M, Lim A, Law E. MechanicalHeart. Proceedings of the ACM on Human-Computer Interaction 2018;2(CSCW):1 View
- Rangrej S, Sivaswamy J, Srivastava P, El-Baz A. Scan, dwell, decide: Strategies for detecting abnormalities in diabetic retinopathy. PLOS ONE 2018;13(11):e0207086 View
- Juni M, Eckstein M. The wisdom of crowds for visual search. Proceedings of the National Academy of Sciences 2017;114(21) View
- Meyer A, Longhurst C, Singh H. Crowdsourcing Diagnosis for Patients With Undiagnosed Illnesses: An Evaluation of CrowdMed. Journal of Medical Internet Research 2016;18(1):e12 View
- Ausayakhun S, Snyder B, Ausayakhun S, Nanegrungsunk O, Apivatthakakul A, Narongchai C, Melo J, Keenan J. Clinic-Based Eye Disease Screening Using Non-Expert Fundus Photo Graders at the Point of Screening: Diagnostic Validity and Yield. American Journal of Ophthalmology 2021;227:245 View
- Karani R, Tapiero S, Jefferson F, Vernez S, Xie L, Larson K, Osann K, Okhunov Z, Patel R, Landman J, Clayman R, Stephany H. Crowd-Sourced Assessment of Surgical Skills of Urology Resident Applicants: Four-Year Experience. Journal of Surgical Education 2021;78(6):2030 View
- Sonabend A, Zacharia B, Cloney M, Sonabend A, Showers C, Ebiana V, Nazarian M, Swanson K, Baldock A, Brem H, Bruce J, Butler W, Cahill D, Carter B, Orringer D, Roberts D, Sagher O, Sanai N, Schwartz T, Silbergeld D, Sisti M, Thompson R, Waziri A, Ghogawala Z, McKhann G. Defining Glioblastoma Resectability Through the Wisdom of the Crowd: A Proof-of-Principle Study. Neurosurgery 2017;80(4):590 View
- Laurik-Feuerstein K, Sapahia R, Cabrera DeBuc D, Somfai G, Grzybowski A. The assessment of fundus image quality labeling reliability among graders with different backgrounds. PLOS ONE 2022;17(7):e0271156 View
- Ysidron D, France C, Yang Y, Mischkowski D. Research participants recruited using online labor markets may feign medical conditions and overreport symptoms: Caveat emptor. Journal of Psychosomatic Research 2022;159:110948 View
- Harrington K, Zenk S, Van Horn L, Giurini L, Mahakala N, Kershaw K. The Use of Food Images and Crowdsourcing to Capture Real-time Eating Behaviors: Acceptability and Usability Study. JMIR Formative Research 2021;5(12):e27512 View
- Abousy M, Jenny H, Xun H, Khavanin N, Creighton F, Byrne P, Cooney D, Redett R, Yang R. Personality, Success, and Beyond: The Layperson's Perception of Patients With Facial Transplantation. Journal of Craniofacial Surgery 2022;33(2):385 View
- Socia D, Brady C, West S, Cockrell R, Vinetz J. Detection of trachoma using machine learning approaches. PLOS Neglected Tropical Diseases 2022;16(12):e0010943 View
- Brady C, Cockrell R, Aldrich L, Wolle M, West S. A Virtual Reading Center Model Using Crowdsourcing to Grade Photographs for Trachoma: Validation Study. Journal of Medical Internet Research 2023;25:e41233 View
- Rani P, Nangia V, Murthy K, Khanna R, Das T. Community care for diabetic retinopathy and glaucoma in India: A panel discussion. Indian Journal of Ophthalmology 2018;66(7):916 View
- Wu P, Wu J, Hsieh Y, Chen L, Cheng T, Wu P, Hsieh B, Huang W, Huang S, Chen W. Comparing the results of manual and automated quantitative corneal neuroanalysing modules for beginners. Scientific Reports 2021;11(1) View
- Cho J, Zhang W, Armstrong G, Cho D, Culican S. Crowdsourcing and its applications to ophthalmology. Expert Review of Ophthalmology 2023;18(2):113 View
- Nguyen P, Hsu P. Robust and High-Accessibility Ranking Method for Crowdsourcing-Based Decision Making. Group Decision and Negotiation 2023;32(5):1211 View
- Sescleifer A, Francoisse C, Osborn T, Rector J, Lin A. Seeing Cleft Lip from a New Angle: Crowdsourcing to Determine Whether Scar Severity or Lip Angle Matters More to the General Public. Plastic & Reconstructive Surgery 2023 View
- Washington P. A Perspective on Crowdsourcing and Human-in-the-Loop Workflows in Precision Health. Journal of Medical Internet Research 2024;26:e51138 View