Published on in Vol 7, No 5 (2005):

Automated Assessment of the Quality of Depression Websites

Automated Assessment of the Quality of Depression Websites

Automated Assessment of the Quality of Depression Websites

Journals

  1. Stvilia B, Mon L, Yi Y. A model for online consumer health information quality. Journal of the American Society for Information Science and Technology 2009;60(9):1781 View
  2. Zermatten A, Khazaal Y, Coquard O, Chatton A, Bondolfi G. Quality of web-based information on depression. Depression and Anxiety 2010;27(9):852 View
  3. Belen Sağlam R, Taskaya Temizel T. A framework for automatic information quality ranking of diabetes websites. Informatics for Health and Social Care 2015;40(1):45 View
  4. Davis S, Lewis C. Addiction to Self-harm? The Case of Online Postings on Self-harm Message Boards. International Journal of Mental Health and Addiction 2019;17(4):1020 View
  5. Reavley N, Jorm A. The quality of mental disorder information websites: A review. Patient Education and Counseling 2011;85(2):e16 View
  6. Allam A, Schulz P, Krauthammer M. Toward automated assessment of health Web page quality using the DISCERN instrument. Journal of the American Medical Informatics Association 2017;24(3):481 View
  7. Ipser J, Dewing S, Stein D. A systematic review of the quality of information on the treatment of anxiety disorders on the internet. Current Psychiatry Reports 2007;9(4):303 View
  8. Sağlam R, Taşkaya Temizel T. Automatic information timeliness assessment of diabetes web sites by evidence based medicine. Computer Methods and Programs in Biomedicine 2014;117(2):104 View
  9. Athanasopoulou C, Hätönen H, Suni S, Lionis C, Griffiths K, Välimäki M. An analysis of online health information on schizophrenia or related conditions: a cross-sectional survey. BMC Medical Informatics and Decision Making 2013;13(1) View
  10. Zhang Y, Sun Y, Xie B. Quality of health information for consumers on the web: A systematic review of indicators, criteria, tools, and evaluation results. Journal of the Association for Information Science and Technology 2015;66(10):2071 View
  11. Nicholas J, Boydell K, Christensen H. mHealth in psychiatry: time for methodological change. Evidence Based Mental Health 2016;19(2):33 View
  12. Samadbeik M, Ahmadi M, Mohammadi A, Mohseni Saravi B. Health Information on Internet: Quality, Importance, and Popularity of Persian Health Websites. Iranian Red Crescent Medical Journal 2014;16(4) View
  13. Kauer S, Mangan C, Sanci L. Do Online Mental Health Services Improve Help-Seeking for Young People? A Systematic Review. Journal of Medical Internet Research 2014;16(3):e66 View
  14. Boyer C, Dolamic L. Automated Detection of HONcode Website Conformity Compared to Manual Detection: An Evaluation. Journal of Medical Internet Research 2015;17(6):e135 View
  15. Christensen H, Murray K, Calear A, Bennett K, Bennett A, Griffiths K. Beacon: a web portal to high‐quality mental health websites for use by health professionals and the public. Medical Journal of Australia 2010;192(S11) View
  16. Weitzel L, Oliveira J, Quaresma P. Measuring the Reputation in User-generated-content Systems Based on Health Information. Procedia Computer Science 2014;29:364 View
  17. Rosenman S, Christensen H, Griffiths K. What is to Become of the College Clinical Practice Guidelines?. Australasian Psychiatry 2008;16(1):1 View
  18. Papavlasopoulos S, Poulos M, Bokos G. Towards Constructing a Bibliometric Cited Distance Factor for an Article Using an Elman Neural Network. Collnet Journal of Scientometrics and Information Management 2009;3(1):17 View
  19. Mayer M, Karampiperis P, Kukurikos A, Karkaletsis V, Stamatakis K, Villarroel D, Leis A. Applying Semantic Web technologies to improve the retrieval, credibility and use of health-related web resources. Health Informatics Journal 2011;17(2):95 View
  20. Harris I, Roberts L. Exploring the Use and Effects of Deliberate Self-Harm Websites: An Internet-Based Study. Journal of Medical Internet Research 2013;15(12):e285 View
  21. Davis S, Lewis C. Impassioned Communication and Virtual Support Roles of Online Postings: The Case of Self-Harmers. Illness, Crisis & Loss 2019;27(1):19 View
  22. Evans W. Bibliography. Health Communication 2006;20(1):109 View
  23. Wang Y, Liu Z. Automatic detecting indicators for quality of health information on the Web. International Journal of Medical Informatics 2007;76(8):575 View
  24. Song S, Zhang Y, Yu B. Interventions to support consumer evaluation of online health information credibility: A scoping review. International Journal of Medical Informatics 2021;145:104321 View
  25. Nădăşan V. The Quality of Online Health-Related Information – an Emergent Consumer Health Issue. Acta Medica Marisiensis 2016;62(4):408 View
  26. Fernández-Pichel M, Losada D, Pichel J. A multistage retrieval system for health-related misinformation detection. Engineering Applications of Artificial Intelligence 2022;115:105211 View
  27. Alyusuf R, Prasad K, Satir A, Abalkhail A, Arora R. Development and validation of a tool to evaluate the quality of medical education websites in pathology. Journal of Pathology Informatics 2013;4(1):29 View
  28. Horwood G, Augoustinos M. ‘It’s more than sadness’: The Discursive Construction of Depression on Australian Depression Websites. Qualitative Health Research 2022;32(7):1185 View
  29. Ölçer D, Taşkaya Temizel T. Quality assessment of web-based information on type 2 diabetes. Online Information Review 2022;46(4):715 View
  30. Kurtuluş İ. Measurement of the Reliability and Quality of Online Surgery Videos with Artificial Neural Networks. Istanbul Medical Journal 2022;23(2):79 View
  31. Alan R, Alan B. Utilizing ChatGPT-4 for Providing Information on Periodontal Disease to Patients: A DISCERN Quality Analysis. Cureus 2023 View

Books/Policy Documents

  1. Xie J, Burstein F. Database Systems for Adanced Applications. View
  2. Abramczuk K, Ka̧kol M, Wierzbicki A. Human Interface and the Management of Information: Information, Design and Interaction. View
  3. Mitra A. Advanced Models and Tools for Effective Decision Making Under Uncertainty and Risk Contexts. View
  4. Weitzel L, Quaresma P, Moreira de Oliveira J, Artigas D. Graph Theoretic Approaches for Analyzing Large-Scale Social Networks. View
  5. Karkaletsis V, Stamatakis K, Karampiperis P, Labský M, Růžička M, Svátek V, Cabrera E, Pöllä M, Mayer M, Gonzales D. Data Mining and Medical Knowledge Management. View
  6. . Data Mining and Medical Knowledge Management. View
  7. Tang T, Hawking D, Sankaranarayana R, Griffiths K, Craswell N. Advances in Information Retrieval. View
  8. Fernández-Pichel M, Losada D, Pichel J, Elsweiler D. Advances in Information Retrieval. View
  9. Reavley N, Fernando L, Jorm A. Mental Health in a Digital World. View
  10. Zhang Y, Mercer R, Burkell J, Cui H. Computational Linguistics and Intelligent Text Processing. View
  11. Fernández-Pichel M, Losada D, Pichel J, Elsweiler D. Experimental IR Meets Multilinguality, Multimodality, and Interaction. View