Published on in Vol 21, No 7 (2019): July

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/12443, first published .
Identifying Key Target Audiences for Public Health Campaigns: Leveraging Machine Learning in the Case of Hookah Tobacco Smoking

Identifying Key Target Audiences for Public Health Campaigns: Leveraging Machine Learning in the Case of Hookah Tobacco Smoking

Identifying Key Target Audiences for Public Health Campaigns: Leveraging Machine Learning in the Case of Hookah Tobacco Smoking

Journals

  1. Cossin S, Thiébaut R. Public Health and Epidemiology Informatics: Recent Research Trends Moving toward Public Health Data Science. Yearbook of Medical Informatics 2020;29(01):231 View
  2. Singh T, Roberts K, Cohen T, Cobb N, Wang J, Fujimoto K, Myneni S. Social Media as a Research Tool (SMaaRT) for Risky Behavior Analytics: Methodological Review. JMIR Public Health and Surveillance 2020;6(4):e21660 View
  3. Trinh Ha P, D’Silva R, Chen E, Koyutürk M, Karakurt G. Identification of intimate partner violence from free text descriptions in social media. Journal of Computational Social Science 2022;5(2):1207 View
  4. Fu R, Kundu A, Mitsakakis N, Elton-Marshall T, Wang W, Hill S, Bondy S, Hamilton H, Selby P, Schwartz R, Chaiton M. Machine learning applications in tobacco research: a scoping review. Tobacco Control 2023;32(1):99 View
  5. Malik A, Berggren W, Al-Busaidi A. Instagram as a research tool for examining tobacco-related content: A methodological review. Technology in Society 2022;70:102008 View
  6. Fisher S, Rosella L. Priorities for successful use of artificial intelligence by public health organizations: a literature review. BMC Public Health 2022;22(1) View
  7. Singh T, Roberts K, Cohen T, Cobb N, Franklin A, Myneni S. Discerning conversational context in online health communities for personalized digital behavior change solutions using Pragmatics to Reveal Intent in Social Media (PRISM) framework. Journal of Biomedical Informatics 2023;140:104324 View
  8. Dobbs P, Boykin A, Ezike N, Myers A, Colditz J, Primack B. Twitter Sentiment About the US Federal Tobacco 21 Law: Mixed Methods Analysis. JMIR Formative Research 2023;7:e50346 View
  9. Laestadius L, Penndorf K, Seidl M, Pokhrel P, Patrick R, Cho Y. Young Adult Identification and Perception of Hashtag-Based Vaping Claims on Instagram. Health Education & Behavior 2020;47(4):611 View
  10. Alqahtani M, Alanazi A, Algarni S, Aljohani H, Alenezi F, F Alotaibi T, Alotaibi M, K Alqahtani M, Alahmari M, S Alwadeai K, M Alghamdi S, Almeshari M, Alshammari T, Mumenah N, Al Harbi E, Al Nufaiei Z, Alhuthail E, Alzahrani E, Alahmadi H, Alarifi A, Zaidan A, T Ismaeil T. Unveiling the Influence of AI on Advancements in Respiratory Care: Narrative Review. Interactive Journal of Medical Research 2024;13:e57271 View
  11. Kapoor N, Sanjana S, Davalagi S, Balu P, Sethia S. AI Horizons in Indian Healthcare: A Vision for Transformation and Equity. Indian Journal of Community Medicine 2024;49(Suppl 2):S210 View

Books/Policy Documents

  1. von Samson-Himmelstjerna C. Standardisierte Inhaltsanalyse in der Kommunikationswissenschaft – Standardized Content Analysis in Communication Research. View
  2. Khalil K, Stankevich M, Smirnov I, Danina M. Artificial Intelligence. View
  3. Mejova Y. Handbook of Computational Social Science for Policy. View