TY - JOUR AU - Dong, Jiale AU - Jin, Zhechuan AU - Li, Chengxiang AU - Yang, Jian AU - Jiang, Yi AU - Li, Zeqian AU - Chen, Cheng AU - Zhang, Bo AU - Ye, Zhaofei AU - Hu, Yang AU - Ma, Jianguo AU - Li, Ping AU - Li, Yulin AU - Wang, Dongjin AU - Ji, Zhili PY - 2025 DA - 2025/3/6 TI - Machine Learning Models With Prognostic Implications for Predicting Gastrointestinal Bleeding After Coronary Artery Bypass Grafting and Guiding Personalized Medicine: Multicenter Cohort Study JO - J Med Internet Res SP - e68509 VL - 27 KW - machine learning KW - personalized medicine KW - coronary artery bypass grafting KW - adverse outcome KW - gastrointestinal bleeding AB - Background: Gastrointestinal bleeding is a serious adverse event of coronary artery bypass grafting and lacks tailored risk assessment tools for personalized prevention. Objective: This study aims to develop and validate predictive models to assess the risk of gastrointestinal bleeding after coronary artery bypass grafting (GIBCG) and to guide personalized prevention. Methods: Participants were recruited from 4 medical centers, including a prospective cohort and the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. From an initial cohort of 18,938 patients, 16,440 were included in the final analysis after applying the exclusion criteria. Thirty combinations of machine learning algorithms were compared, and the optimal model was selected based on integrated performance metrics, including the area under the receiver operating characteristic curve (AUROC) and the Brier score. This model was then developed into a web-based risk prediction calculator. The Shapley Additive Explanations method was used to provide both global and local explanations for the predictions. Results: The model was developed using data from 3 centers and a prospective cohort (n=13,399) and validated on the Drum Tower cohort (n=2745) and the MIMIC cohort (n=296). The optimal model, based on 15 easily accessible admission features, demonstrated an AUROC of 0.8482 (95% CI 0.8328-0.8618) in the derivation cohort. In external validation, the AUROC was 0.8513 (95% CI 0.8221-0.8782) for the Drum Tower cohort and 0.7811 (95% CI 0.7275-0.8343) for the MIMIC cohort. The analysis indicated that high-risk patients identified by the model had a significantly increased mortality risk (odds ratio 2.98, 95% CI 1.784-4.978; P<.001). For these high-risk populations, preoperative use of proton pump inhibitors was an independent protective factor against the occurrence of GIBCG. By contrast, dual antiplatelet therapy and oral anticoagulants were identified as independent risk factors. However, in low-risk populations, the use of proton pump inhibitors (χ21=0.13, P=.72), dual antiplatelet therapy (χ21=0.38, P=.54), and oral anticoagulants (χ21=0.15, P=.69) were not significantly associated with the occurrence of GIBCG. Conclusions: Our machine learning model accurately identified patients at high risk of GIBCG, who had a poor prognosis. This approach can aid in early risk stratification and personalized prevention. Trial Registration: Chinese Clinical Registry Center ChiCTR2400086050; http://www.chictr.org.cn/showproj.html?proj=226129 SN - 1438-8871 UR - https://www.jmir.org/2025/1/e68509 UR - https://doi.org/10.2196/68509 UR - http://www.ncbi.nlm.nih.gov/pubmed/40053791 DO - 10.2196/68509 ID - info:doi/10.2196/68509 ER -