TY - JOUR AU - Chavez-Yenter, Daniel AU - Kimball, Kadyn E AU - Kohlmann, Wendy AU - Lorenz Chambers, Rachelle AU - Bradshaw, Richard L AU - Espinel, Whitney F AU - Flynn, Michael AU - Gammon, Amanda AU - Goldberg, Eric AU - Hagerty, Kelsi J AU - Hess, Rachel AU - Kessler, Cecilia AU - Monahan, Rachel AU - Temares, Danielle AU - Tobik, Katie AU - Mann, Devin M AU - Kawamoto, Kensaku AU - Del Fiol, Guilherme AU - Buys, Saundra S AU - Ginsburg, Ophira AU - Kaphingst, Kimberly A PY - 2021 DA - 2021/11/18 TI - Patient Interactions With an Automated Conversational Agent Delivering Pretest Genetics Education: Descriptive Study JO - J Med Internet Res SP - e29447 VL - 23 IS - 11 KW - cancer KW - genetic testing KW - virtual conversational agent KW - user interaction KW - smartphone KW - mobile phone AB - Background: Cancer genetic testing to assess an individual’s cancer risk and to enable genomics-informed cancer treatment has grown exponentially in the past decade. Because of this continued growth and a shortage of health care workers, there is a need for automated strategies that provide high-quality genetics services to patients to reduce the clinical demand for genetics providers. Conversational agents have shown promise in managing mental health, pain, and other chronic conditions and are increasingly being used in cancer genetic services. However, research on how patients interact with these agents to satisfy their information needs is limited. Objective: Our primary aim is to assess user interactions with a conversational agent for pretest genetics education. Methods: We conducted a feasibility study of user interactions with a conversational agent who delivers pretest genetics education to primary care patients without cancer who are eligible for cancer genetic evaluation. The conversational agent provided scripted content similar to that delivered in a pretest genetic counseling visit for cancer genetic testing. Outside of a core set of information delivered to all patients, users were able to navigate within the chat to request additional content in their areas of interest. An artificial intelligence–based preprogrammed library was also established to allow users to ask open-ended questions to the conversational agent. Transcripts of the interactions were recorded. Here, we describe the information selected, time spent to complete the chat, and use of the open-ended question feature. Descriptive statistics were used for quantitative measures, and thematic analyses were used for qualitative responses. Results: We invited 103 patients to participate, of which 88.3% (91/103) were offered access to the conversational agent, 39% (36/91) started the chat, and 32% (30/91) completed the chat. Most users who completed the chat indicated that they wanted to continue with genetic testing (21/30, 70%), few were unsure (9/30, 30%), and no patient declined to move forward with testing. Those who decided to test spent an average of 10 (SD 2.57) minutes on the chat, selected an average of 1.87 (SD 1.2) additional pieces of information, and generally did not ask open-ended questions. Those who were unsure spent 4 more minutes on average (mean 14.1, SD 7.41; P=.03) on the chat, selected an average of 3.67 (SD 2.9) additional pieces of information, and asked at least one open-ended question. Conclusions: The pretest chat provided enough information for most patients to decide on cancer genetic testing, as indicated by the small number of open-ended questions. A subset of participants were still unsure about receiving genetic testing and may require additional education or interpersonal support before making a testing decision. Conversational agents have the potential to become a scalable alternative for pretest genetics education, reducing the clinical demand on genetics providers. SN - 1438-8871 UR - https://www.jmir.org/2021/11/e29447 UR - https://doi.org/10.2196/29447 UR - http://www.ncbi.nlm.nih.gov/pubmed/34792472 DO - 10.2196/29447 ID - info:doi/10.2196/29447 ER -