TY - JOUR AU - Jimenez, Alberto Jimenez AU - Estevez-Reboredo, Rosa M AU - Santed, Miguel A AU - Ramos, Victoria PY - 2020 DA - 2020/12/18 TI - COVID-19 Symptom-Related Google Searches and Local COVID-19 Incidence in Spain: Correlational Study JO - J Med Internet Res SP - e23518 VL - 22 IS - 12 KW - behavioral epidemiology KW - big data KW - smart data KW - tracking KW - nowcasting KW - forecast KW - predict KW - infosurveillance KW - infodemiology KW - COVID-19 AB - Background: COVID-19 is one of the biggest pandemics in human history, along with other disease pandemics, such as the H1N1 influenza A, bubonic plague, and smallpox pandemics. This study is a small contribution that tries to find contrasted formulas to alleviate global suffering and guarantee a more manageable future. Objective: In this study, a statistical approach was proposed to study the correlation between the incidence of COVID-19 in Spain and search data provided by Google Trends. Methods: We assessed the linear correlation between Google Trends search data and the data provided by the National Center of Epidemiology in Spain—which is dependent on the Instituto de Salud Carlos III—regarding the number of COVID-19 cases reported with a certain time lag. These data enabled the identification of anticipatory patterns. Results: In response to the ongoing outbreak, our results demonstrate that by using our correlation test, the evolution of the COVID-19 pandemic can be predicted in Spain up to 11 days in advance. Conclusions: During the epidemic, Google Trends offers the possibility to preempt health care decisions in real time by tracking people's concerns through their search patterns. This can be of great help given the critical, if not dramatic need for complementary monitoring approaches that work on a population level and inform public health decisions in real time. This study of Google search patterns, which was motivated by the fears of individuals in the face of a pandemic, can be useful in anticipating the development of the pandemic. SN - 1438-8871 UR - http://www.jmir.org/2020/12/e23518/ UR - https://doi.org/10.2196/23518 UR - http://www.ncbi.nlm.nih.gov/pubmed/33156803 DO - 10.2196/23518 ID - info:doi/10.2196/23518 ER -