%0 Journal Article %@ 1438-8871 %I JMIR Publications %V 26 %N %P e55388 %T Evaluation of Prompts to Simplify Cardiovascular Disease Information Generated Using a Large Language Model: Cross-Sectional Study %A Mishra,Vishala %A Sarraju,Ashish %A Kalwani,Neil M %A Dexter,Joseph P %+ Data Science Initiative, Harvard University, Science and Engineering Complex 1.312-10, 150 Western Avenue, Allston, MA, 02134, United States, 1 8023381330, jdexter@fas.harvard.edu %K artificial intelligence %K ChatGPT %K GPT %K digital health %K large language model %K NLP %K language model %K language models %K prompt engineering %K health communication %K generative %K health literacy %K natural language processing %K patient-physician communication %K health communication %K prevention %K cardiology %K cardiovascular %K heart %K education %K educational %K human-in-the-loop %K machine learning %D 2024 %7 22.4.2024 %9 Research Letter %J J Med Internet Res %G English %X In this cross-sectional study, we evaluated the completeness, readability, and syntactic complexity of cardiovascular disease prevention information produced by GPT-4 in response to 4 kinds of prompts. %M 38648104 %R 10.2196/55388 %U https://www.jmir.org/2024/1/e55388 %U https://doi.org/10.2196/55388 %U http://www.ncbi.nlm.nih.gov/pubmed/38648104