%0 Journal Article %@ 1438-8871 %I JMIR Publications %V 25 %N %P e50865 %T Evaluation of GPT-4’s Chest X-Ray Impression Generation: A Reader Study on Performance and Perception %A Ziegelmayer,Sebastian %A Marka,Alexander W %A Lenhart,Nicolas %A Nehls,Nadja %A Reischl,Stefan %A Harder,Felix %A Sauter,Andreas %A Makowski,Marcus %A Graf,Markus %A Gawlitza,Joshua %+ Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, Munich, 81675, Germany, 49 1759153694, ga89rog@mytum.de %K generative model %K GPT %K medical imaging %K artificial intelligence %K imaging %K radiology %K radiological %K radiography %K diagnostic %K chest %K x-ray %K x-rays %K generative %K multimodal %K impression %K impressions %K image %K images %K AI %D 2023 %7 22.12.2023 %9 Research Letter %J J Med Internet Res %G English %X Exploring the generative capabilities of the multimodal GPT-4, our study uncovered significant differences between radiological assessments and automatic evaluation metrics for chest x-ray impression generation and revealed radiological bias. %M 38133918 %R 10.2196/50865 %U https://www.jmir.org/2023/1/e50865 %U https://doi.org/10.2196/50865 %U http://www.ncbi.nlm.nih.gov/pubmed/38133918