%0 Journal Article %@ 1438-8871 %I JMIR Publications %V 22 %N 3 %P e16770 %T Deep Digital Phenotyping and Digital Twins for Precision Health: Time to Dig Deeper %A Fagherazzi,Guy %+ Luxembourg Institute of Health, Department of Population Health, Digital Epidemiology Hub, 1 A-B Rue Thomas Edison, Strassen, 1445, Luxembourg, 33 669396334, guy.fagherazzi@lih.lu %K digital health %K digital epidemiology %K deep digital phenotyping %K digital orthodoxy %K precision medicine %K precision health %K personalized medicine %K digital phenotyping %K precision prevention %K big data %K omics %K digitosome %K data lake %K digital cohort %D 2020 %7 3.3.2020 %9 Viewpoint %J J Med Internet Res %G English %X This viewpoint describes the urgent need for more large-scale, deep digital phenotyping to advance toward precision health. It describes why and how to combine real-world digital data with clinical data and omics features to identify someone’s digital twin, and how to finally enter the era of patient-centered care and modify the way we view disease management and prevention. %M 32130138 %R 10.2196/16770 %U https://www.jmir.org/2020/3/e16770 %U https://doi.org/10.2196/16770 %U http://www.ncbi.nlm.nih.gov/pubmed/32130138