%0 Journal Article %@ 1438-8871 %I JMIR Publications %V 22 %N 10 %P e21367 %T Health Outcomes from Home Hospitalization: Multisource Predictive Modeling %A Calvo,Mireia %A González,Rubèn %A Seijas,Núria %A Vela,Emili %A Hernández,Carme %A Batiste,Guillem %A Miralles,Felip %A Roca,Josep %A Cano,Isaac %A Jané,Raimon %+ Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Villarroel 170, Barcelona, 08036, Spain, 34 932275540, ISCANO@clinic.cat %K home hospitalization %K health risk assessment %K predictive modeling %K chronic care %K integrated care %K modeling %K hospitalization %K health risk %K prediction %K mortality %K clinical decision support %D 2020 %7 7.10.2020 %9 Original Paper %J J Med Internet Res %G English %X Background: Home hospitalization is widely accepted as a cost-effective alternative to conventional hospitalization for selected patients. A recent analysis of the home hospitalization and early discharge (HH/ED) program at Hospital Clínic de Barcelona over a 10-year period demonstrated high levels of acceptance by patients and professionals, as well as health value-based generation at the provider and health-system levels. However, health risk assessment was identified as an unmet need with the potential to enhance clinical decision making. Objective: The objective of this study is to generate and assess predictive models of mortality and in-hospital admission at entry and at HH/ED discharge. Methods: Predictive modeling of mortality and in-hospital admission was done in 2 different scenarios: at entry into the HH/ED program and at discharge, from January 2009 to December 2015. Multisource predictive variables, including standard clinical data, patients’ functional features, and population health risk assessment, were considered. Results: We studied 1925 HH/ED patients by applying a random forest classifier, as it showed the best performance. Average results of the area under the receiver operating characteristic curve (AUROC; sensitivity/specificity) for the prediction of mortality were 0.88 (0.81/0.76) and 0.89 (0.81/0.81) at entry and at home hospitalization discharge, respectively; the AUROC (sensitivity/specificity) values for in-hospital admission were 0.71 (0.67/0.64) and 0.70 (0.71/0.61) at entry and at home hospitalization discharge, respectively. Conclusions: The results showed potential for feeding clinical decision support systems aimed at supporting health professionals for inclusion of candidates into the HH/ED program, and have the capacity to guide transitions toward community-based care at HH discharge. %M 33026357 %R 10.2196/21367 %U http://www.jmir.org/2020/10/e21367/ %U https://doi.org/10.2196/21367 %U http://www.ncbi.nlm.nih.gov/pubmed/33026357