Multimedia Appendix 2. Sex and Race/Ethnicity Reported by Various BYOD Studies, Census, and National Vital Statistics System.

	
	Sex
	Reported Race and Ethnicity
	

	Study Name
	Women
	Men
	White
	Black
	Asian
	Hispanic/
Latino
	Non-Latino
	Other
	P-value of Chi-Squared Test of Race and Ethnicity between US Demographics and Study Population

	Framingham Heart Study [1]
	59
	41
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A

	TemPredict*  [2]
	34
	66
	81
	0
	4
	17
	83
	15
	P < .001

	Sleep Cycle [3]
	45.27
	54.75
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A

	MyHeartCounts [4]
	22.39
	77.55
	76.15
	3.32
	8.82
	7.27
	19.87
	4.44
	P < .001

	MyPHD [5]
	55.3
	44.7
	74.9
	2.9
	3.9
	0
	0
	18.3
	P < .001

	SleeHealth Mobile App* [6]
	20.8
	79.2
	77.9
	2.9
	5.2
	11.3
	87.2
	3.7
	P < .001

	Predicting Daily Mood [7]
	77.8
	22.2
	57.5
	16.2
	N/A
	15.1
	N/A
	N/A
	N/A

	Asthma Health App [8]
	39
	61
	69
	5
	N/A
	14
	N/A
	7
	N/A

	MyDataHelps (COVID-19 Study) [9]
	62
	38
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A

	PARADE App [10]
	80.7
	19.3
	80.7
	4
	2.8
	10
	N/A
	N/A
	P < .001

	Multiple Sclerosis in the Real-World Using an App (elevateMS) [11]
	73.3
	26.7
	85.4
	6.1
	1.9
	4.2
	95.7
	2.3
	P < .001

	Phendo Endometris Research App [12]
	99
	3
	82.9
	2.3
	2.6
	4.9
	95.1
	6.7
	P < .001

	Brighten [13]
	77.1
	22.9
	53.3
	7.2
	7.0
	30.7
	69.3
	0.9
	 P = 0.008

	Influenza-like Illness Study  [14]
	60.2
	39.4
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A

	All of Us (Fitbit) [15]
	70
	28
	82.4
	4.53
	3.05
	6.38
	N/A
	2.42
	P < .001

	All of Us (All Participants) [15]
	60.1
	37.7
	51.5
	21.24
	3.26
	18.8
	N/A
	N/A
	P = 0.072

	CovIdentify
	67.75
	32.2
	87.55
	3.61
	3.28
	4
	N/A
	N/A
	P < .001

	U.S. Census Demographics [16]
	50.8
	49.2
	60.1
	13.4
	5.9
	18.5
	81.5
	N/A
	P = 1.0

	COVID-19 Positive Cases [16]
	N/A
	N/A
	34.79
	21.81
	3.85
	33.38
	N/A
	N/A
	P < .001

	Deaths in the U.S. due to COVID-19 [17]
	N/A
	N/A
	53.56
	23.26
	4.95
	17.08
	N/A
	N/A
	P = 0.042
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