Multimedia Appendix 2. Step-by-step pseudocode algorithm for the DDN network.
	Input:
N: The Number of Non-redundant Input Candidate Features Fi Expected by Domain Experts, where Fi ∈ F, N ≤ k, and k ∈ Z++

F3M+: [T1, T2, ..., Tp], where F3M+ is a set of all non-redundant input candidate features Tj selected by at least three metrics, i.e., MICj, 1-GIj, CSj, and IGj, for 1 ≤ j ≤ p, Tj ∈ F, MICj ∈ MIC, 1-GIj ∈ 1-GI, CSj ∈ CS, IGj ∈ IG, and p ∈ Z++

F2M: [S1, S2, ..., Sq], where F2M is a set of all non-redundant input candidate features Sℓ selected by exactly two metrics, i.e., MICℓ, 1-GIℓ, CSℓ, and IGℓ, for 1 ≤ ℓ ≤ q, Sℓ ∈ F, MICℓ ∈ MIC, 1-GIℓ ∈ 1-GI, CSℓ ∈ CS, IGℓ ∈ IG, and q ∈ Z++

B_Outcome: Behavioral Outcome

Drop_Out_Rate: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] is a set of fine-tuning dropout rates for building a DDN network.

D_Train: Training Data Set on F3M+

Z: [Z1, Z2, … Zn], where Z is a set of Zrs, for Zr is a possible subset combination of F2M, Zr ≠ θ, and |Zr | ≤ N - |F3M+|, 1 ≤ r ≤ n, and n ∈ Z++

M: [F3M+ + Zr], where M is a set of F3M+ U Zr, for Zr is a possible subset combination of F2M, Zr ≠ θ, and |Zr | ≤ N - |F3M+|, 1 ≤ r ≤ n, and n ∈ Z++

E_Train: Training Data Sets on M

K: The Number of Training Partitions on D_Train and E_Train for Performing Cross-Validation (CV)
Output:
Final_Features: A Set of Final Features Selected by the DDN Network for Building Machine Learning Classifiers.
Initialization:
Learning_Rate = 0.001 # The hyperparameter to govern the pace at which the optimizer algorithm updates the weight values of a DDN network.

Epochs = 500 # The hyperparameter to define the number of times that the learning optimizer works through the entire training dataset on a DDN network

Optimizer = "Adam" # The Adam Optimizer is used for training a DDN network

Loss_Function = "Binary Cross Entropy" # The logarithmic loss to track incorrect labeling of the data class by a DDN network and penalize the network if deviations in probability occur in classifying the labels.

Number_Of_Hidden_Layers = 2 # The number of hidden layers in a DDN network

Number_Of_Output_Layer = 1 # The number of output layer in a DDN network

Hidden_Layer_Size = Inline graphic 3 # The number of neurons in each hidden layer, where |F3M+| is the number of input features in F3M+

Output_Layer_Size = 1 # The number of neurons in the output layer

Hidden_Layer_Activation_Function = "Relu" # The neuron activation function used in each hidden layer

Output_Layer_Activation_Function = "Sigmoid" # The neuron activation function used in the output layer

	Processing:
STEP 1: Find the best dropout rate, by using the Grid-Search technique, F1-score, and K-fold cross-validation, on D_Train, F3M+, B_Outcome, and Drop_Out_Rate of a DDN network constructed by the create_DDN function.

let maxF1-score = 0
let bestDropOutRate = 0
for dor in Drop_Out_Rate:
DDN = create_DDN(dor, | F3M+|, Number_Of_Hidden_Layers, Number_Of_Output_Layer, Hidden_Layer_Size, Output_Layer_Size, Hidden_Layer_Activation_Function, Output_Layer_Activation_Function)
F1-score[dor] = DNN.train_model(D_Train, B_Outcome, K, Learning_Rate, Epochs, Optimizer, Loss_Function)
if F1-score[dor] > maxF1-score:
maxF1-score = F1-score[dor]
bestDropOutRate = dor

STEP 2: Construct a DDN network, by the create_DDN function, on bestDropOutRate, D_Train, F3M+, and B_Outcome, and then perform K-fold cross-validation to obtain the baseline F1 score, i.e., F1Baseline.

STEP 3: Iterate each feature set [F3M+ + Zr] in M and construct a DDN network, by the create_DDN function, on bestDropOutRate, E_Train, [F3M+ + Zr], and B_Outcome, and then perform the K-fold cross-validation to obtain its F1 score, i.e., F1r, where 1 ≤ r ≤ n

Final_Features = F3M+
F1Max = F1Baseline

for fs in M:
Hidden_Layer_Size =
DDN = create_DDN(bestDropOutRate, |fs|, Number_Of_Hidden_Layers, Number_Of_Output_Layer, Hidden_Layer_Size, Output_Layer_Size, Hidden_Layer_Activation_Function, Output_Layer_Activation_Function)
F1fs = DNN.train_model(E_Train, B_Outcome, K, Learning_Rate, Epochs, Optimizer, Loss_Function)
if F1fs > F1Max:
F1Max = F1fs
Final_Features = fs

STEP 4: Return Final_Features

