Multimedia Appendix 1. Step-by-step pseudocode algorithm for the multimetric, majority-voting filter.

	Input:
F: [F1, F2, ..., Fk], where F is a set of all input candidate features Fi of the pre-processed clinical records, for 1 ≤ i ≤ k and k ∈ Z++

B_Outcome: Behavioral Outcome

D_Train: Training Data Set on F

MIC: [MIC1, MIC2, ..., MICk], where MIC is a set of the corresponding maximal information coefficient values MICi between Fi and B_Outcome computed on D_Train, for 1 ≤ i ≤ k, MICi ∈ MIC, and k ∈ Z++

1-GI: [1-GI1, 1-GI2, ..., 1-GIk], where 1-GI is a set of the corresponding 1-Gini Indexi (GIi) values between Fi and B_Outcome computed on D_Train, for 1 ≤ i ≤ k, 1-GIi ∈ 1-GI, and k ∈ Z++

CS: [CS1, CS2, ..., CSk], where CS is a set of the corresponding correlation score values CSi, i.e., Pearson Correlation Coefficient (PCC), Point Bi-Serial Correlation (PBC), or φ-Coefficient (φ), between Fi and B_Outcome computed on D_Train based upon the data type of Fi and B_Outcome for 1 ≤ i ≤ k, CSi ∈ CS, and k ∈ Z++

IG: [IG1, IG2, ..., IGk], where IG is a set of the corresponding Information Gain IGi values between Fi and B_Outcome computed on D_Train, for 1 ≤ i ≤ k, IGi ∈ IG, and k ∈ Z++

N: The Number of Non-redundant Input Candidate Features Fi Expected by Domain Experts, where Fi ∈ F, N ≤ k, and k ∈ Z++
Output:
F3M+: [T1, T2, …, Tp], where F3M+ is a set of all non-redundant input candidate features Tj selected by at least three metrics, i.e., MICj, 1-GIj, CSj, and IGj, for 1 ≤ j ≤ p, Tj ∈ F, MICj ∈ MIC, 1-GIj ∈ 1-GI, CSj ∈ CS, IGj ∈ IG, and p ∈ Z++

F2M: [S1, S2, …, Sq], where F2M is a set of all non-redundant input candidate features Sℓ selected by exactly two metrics, i.e., MICℓ, 1-GIℓ, CSℓ, and IGℓ, for 1 ≤ ℓ ≤ q, Sℓ ∈ F, MICℓ ∈ MIC, 1-GIℓ ∈ 1-GI, CSℓ ∈ CS, IGℓ ∈ IG, and q ∈ Z++
Initialization:
3Metrics+ = [] # Store a set of candidate features Fi selected by at least three metrics, i.e., MICi, 1-GIi, CSi, or IGi, where 1 ≤ i ≤ k, Fi ∈ F, MICi ∈ MIC, 1-GIi ∈ 1-GI, CSi ∈ CS, IGi ∈ IG, and k ∈ Z++

2Metrics = [] # Store a set of candidate features Fi selected by exactly two metrics, i.e., MICi, 1-GIi, CSi, or IGi, where 1 ≤ i ≤ k, Fi ∈ F, MICi ∈ MIC, 1-GIi ∈ 1-GI, CSi ∈ CS, IGi ∈ IG, and k ∈ Z++

3+2Metrics = [] # Store a set of candidate features Fi from both 3Metrics+ and 2Metrics

Rank = [] # Store a set of mean rank positions for each feature in 3+2Metrics. The smaller the position value, the higher the feature rank.

MIC_Feature_Score = [] # Store a set of 1 – MIC[fi, fj] values between any pair of two features fi and fj in 3+2Metrics computed on D_Train, where i ≠ j.

CS_Feature_Score = [] # Store a set of 1 – CS[fi, fj] values between any pair of two features fi and fj in 3+2Metrics computed on D_Train, where i ≠ j.

M = N # Set the initial number of available input candidate features, where M N and M k, for M, N, k ∈ Z++

	Processing:
STAGE 1A – Select the Top N Features Per Metric

STEP 1: Sort Fis in the descending order, according to their MICi, 1-GIi, CSi, and IGi values, by the developed sort_features function and then store their corresponding top M features in the sets, i.e., FMIC, F1-GI, FCS, and FIG.

FMIC = sort_features(F, by = MIC, ascending = False).top(M)
F1-GI = sort_features(F, by = 1-GI, ascending = False).top(M)
FCS = sort_features(F, by = CS, ascending = False).top(M)
FIG = sort_features(F, by = IG, ascending = False).top(M)

STEP 2: Create a set FUNION = FMIC UAF1-G1 UAFCS UAF1G, where UA is a UNION ALL operator that can combine two or more result sets with duplicate values.

STEP 3: Check if a feature Fi ∈ F appears in at least three metrics in FUNION and then store it in 3Metrics+.

for f in FUNION:
if COUNT(f) ≥ 3 in FUNION:
3Metrics+.add(f)

STEP 4: Check if a feature Fi ∈ F appears in exactly two metrics in FUNION and then store it in 2Metrics.

for f in FUNION:
if COUNT(f) == 2 in FUNION:
2Metrics.add(f)

STEP 5: Create a set 3+2Metrics = 3Metrics+ U 2Metrics, where U is a UNION operator that can combine two or more result sets without duplicate values.

STEP 6: Calculate the mean ranking position of each feature Fi ∈ F in 3+2Metrics by the developed rank function and then store it in the 1D matrix, i.e., Rank.

for f in 3+2Metrics:
rMIC = rank(f, FMIC)
r1-GI = rank(f, F1-GI)
rCS = rank(f, FCS)
rIG = rank(f, FIG)
rf =
Rank[f] = rf

STEP 7: Evaluate if the algorithm has enough input candidate features Fis, expected by domain experts, for the redundancy checking.

if size(3Metrics+) > N:
3Metrics+ = sort_features(3Metrics+, by = Rank, ascending = True)
del 3Metrics+[N:]
3+2Metrics = 3Metrics+ U 2Metrics
Return 3Metrics+, 2Metrics, and 3+2Metrics
elseif size(3Metrics+) + size(2Metrics) < N:
M = M + 1
GoTo STEP 1
else:
Return 3Metrics+, 2Metrics, and 3+2Metrics

STAGE 1B – Remove Redundant Input Features

STEP 1: Compute 1 – MIC[fi, fj] values and 1 – CS[fi, fj] values, by the developed compute_MIC and compute_CS functions between any pair of two features f1 and f2 in 3+2Metrics.

for f1 in 3+2Metrics:
for f2 in 3+2Metrics:
if f1 ≠ f2:
MIC[f1, f2] = compute_MIC(f1, f2)
CS[f1, f2]] = compute_CS(f1, f2)
MIC_Feature_Score[f1, f2] = 1 – MIC[f1, f2]
CS_Feature_Score[f1, f2] = 1 – CS[f1, f2]

STEP 2: Iterate each value in MIC_Feature_Score and CS_Feature_Score between any pair of two features f1 and f2 in 3+2Metrics and then remove the redundant one, i.e., MIC_Feature_Score[f1, f2] < 0.05 and CS_Feature_Score[f1, f2] < 0.05, according to their counts and ranks in 3Metrics+ and 2Metrics, where 0.05 is the defined threshold.

let Temp = 3+2Metrics

for f1 in 3+2Metrics:
for f2 in 3+2Metrics:
if f1 ≠ f2 AND MIC_Feature_Score[f1, f2] < 0.05 AND CS_Feature_Score[f1, f2] < 0.05:
if f1 in 3Metrics+ AND f2 in 2Metrics:
Temp.remove(f2)
elseif f2 in 3Metrics+ AND f1 in 2Metrics:
Temp.remove(f1)
elseif f1 in 3Metrics+ AND f2 in 3Metrics+:
if COUNT(f1) in FUNION > COUNT(f2) in FUNION:
Temp.remove(f2)
elseif COUNT(f2) in FUNION > COUNT(f1) in FUNION:
Temp.remove(f1)
elseif Rank[f1] > Rank[f2]:
Temp.remove[f2]
else:
Temp.remove[f1]
elseif f1 in 2Metrics AND f2 in 2Metrics:
if Rank[f1] > Rank[f2]:
Temp.remove[f2]
else:
Temp.remove[f1]

3+2Metrics = Temp

STEP 3: Split 3+2Metrics into two sets, F3M+ and F2M

for f in 3+2Metrics:
if COUNT(f) >= 3 in FUNION:
F3M+.add(f)
else:
F2M.add(f)

STEP 4: Return F3M+ and F2M if the algorithm has enough non-redundant input candidate features Fis, expected by domain experts, or go back to STEP 1 of STAGE 1A.

if size(F3M+) + size(F2M) < N:
M = M + 1
GoTo STEP 1 of STAGE 1A	
else:
Return F3M+ and F2M

