Supplementary Table 1 (Table S1)
	Study
	Title 
	Journal 
	Country 
	Study Design
	Age Group
	ML Techniques 
	Data Source 
	Sample Size
	Features
	ML/Study Objective
	Results

	Krautenbacher
2019[40]
	A strategy for high-dimensional multivariable analysis classifies childhood asthma phenotypes from genetic, immunological, and environmental factors
	Allergy: EAACI
	Germany 
	Prospective Cohort
	4-14 years
	Stochastic gradient boosting; Random Forest (RF); Lasso, elastic net
	Databases (Biomedical); Health Surveys
	260
	7 modalities
	To predict different childhood asthma phenotypes (healthy children, mild‐to‐moderate allergic asthmatics, and nonallergic asthmatic) based off an assembled questionnaire, diagnostic, genotype, microarray, RT‐qPCR, flow cytometry, and cytokine data as inputs
	SG AUC for performed prediction on single modalities separately: 0.54
SG Overall AUC for complete observations including annotated genes: 0.77 
SG Overall AUC for complete observations including non-annotated genes: 0.81 
RF AUC for performed prediction on single modalities separately: 0.66 
RF Overall AUC for complete observations including annotated genes: 0.7 
RF Overall AUC for complete observations including non-annotated genes: 0.7
LASSO AUC for performed prediction on single modalities separately: 0.69
LASSO Overall AUC for complete observations including annotated genes: 0.77 
LASSO Overall AUC for complete observations including non-annotated genes: 0.77

	Bose
2021[32]
	Personalized prediction of early childhood asthma persistence: A machine learning approach
	PLoS ONE
	United States of America
	Retrospective Cohort
	2-5 years
	Gradient boosting & AdaBoosting; Random Forest (RF); K-Nearest Neighbors (KNN); Naive Bayes ; Logistic Regression
	EMRs
	9934
	648
	To predict to predict whether a subsequent asthma diagnosis will occur by age 10 years (individual asthma persistence), given clinical input for a child under the age of 5 years with an incident asthma diagnosis
	RF: Mean ANSA: 0.42, Median ANSA: 0.44, NPV: 0.33, Precision: 0.95, Recall: 0.82, F1 score: 0.88, Accuracy: 0.88
XGB: Mean ANSA: 0.43, Median ANSA: 0.43, NPV: 0.34, Precision: 0.95, Recall: 0.82, F1 score: 0.88, Accuracy: 0.81
Naive Bayes: Mean ANSA 0.29, Median ANSA 0.27, NPV 0.25, Precision 0.95, Recall 0.72, F1 score 0.82, Accuracy 0.72 
K-nearest Neighbours: Mean ANSA 0.40, Median ANSA 0.41, NPV 0.29, Precision 0.95, Recall 0.78, F1 score 0.85, Accuracy 0.77
LR: Mean ANSA 0.42, Median ANSA 0.42, NPV 0.32, Precision 0.95, Recall 0.81, F1 score 0.88, Accuracy 0.81

	Deng
2021[34]
	Application of data science methods to identify school and home risk factors for asthma and allergy-related symptoms among children in New York
	The Science of the total environment
	United States of America
	Prospective Cohort
	8-14 years
	Random Forest (RF); Decision Tree
	Health Surveys
	74
	84
	To use machine-learning methods to evaluate how indoor environmental conditions at home and school contribute to asthma and allergy-related symptoms
	The top contributing factors identified for asthma were family rhinitis history, plant pollen trigger, bedroom carpet, environmental tobacco smoke (ETS) trigger symptom, and ETS exposure

For allergy-related symptoms, plant pollen trigger, higher paternal education, bedroom carpet, family rhinitis history, and higher maternal education were the strongest contributing factors primary heating with hot water radiator was negatively associated with asthma symptoms

	Sills 2021[43]
	Predicting hospitalization of pediatric asthma patients in emergency departments using machine learning
	International Journal of Medical Informatics
	United States of America
	Retrospective Cohort
	4-10 years
	Random Forest (RF); Logistic Regression; H2O Automl)
	EMRs
	9,069 ED visits
	13
	To predict the need for hospitalization of pediatric asthma cases using two different ML models; one with data only available at ED triage, the other adding information available one hour into the ED visit.
	RF Triage timepoint AUC: 0.831
RF Triage timepoint accuracy: 0.777
RF Triage timepoint F1 score: 0.635 
RF 60 minutes post arrival AUC: 0.886
RF 60 minutes post arrival accuracy: 0.795
RF 60 minutes post arrival F1 score: 0.689
LR Triage timepoint AUC: 0.795
LR Triage timepoint accuracy: 0.731
LR Triage timepoint F1 score: 0.564
LR 60 minutes post arrival AUC: 0.823
LR 60 minutes post arrival accuracy: 0.753
LR 60 minutes post arrival F1 score: 0.618
automl Triage timepoint AUC: 0.914
automl Triage timepoint accuracy: 0.849
automl Triage timepoint F1 score: 0.789
automl 60 minutes post arrival AUC: 0.942
automl 60 minutes post arrival accuracy: 0.890
automl 60 minutes post arrival F1 score: 0.848

	Hurst
2021[39]
	Environmental and clinical data utility in pediatric asthma exacerbation risk prediction models
	BMC Medical Informatics and Decision Making
	United States of America
	Retrospective Cohort
	5-18 years
	Linear regression; Gradient boosting & AdaBoosting; Random Forest (RF)
	EMRs; Databases (Biomedical)
	5982
	12
	To predict whether a child will have an asthma related exacerbation in the forthcoming 30-180 days.
	RF AUC of overall model of exacerbation in 30 days: 0.757
RF AUC of overall model of exacerbation in 90 days: 0.747
RF AUC of overall model of exacerbation in 180 days: 0.729
XGB AUC of overall model of exacerbation in 30 days: 0.761
XGB AUC of overall model of exacerbation in 90 days: 0.752
XGB AUC of overall model of exacerbation in 180 days: 0.739
LASSO AUC of overall model of exacerbation in 30 days: 0.753
LASSO AUC of overall model of exacerbation in 90 days: 0.740
LASSO AUC of overall model of exacerbation in 180 days: 0.732

	Bhardwaj 2023[31]
	Machine learning model for classification of predominantly allergic and non-allergic asthma among preschool children with asthma hospitalization
	Journal of Asthma
	New Zealand
	Retrospective Cohort
	1-5 years
	Random Forest (RF); Support Vector Machines (SVM); Logistic Regression; XGB
	EMRs
	205
	93
	To classify two forms of asthma in preschool children (predominantly allergic asthma and non-allergic asthma)
	- Randrom Forest: Accuracy: 67.3%, Precision: 0.71, TPR 0.59, TNR: 0.72, F1: 0.72, ROC-AUC: 0.72 
- XGB: Accuracy: 66.3%, Precision: 0.69, TPR 0.54, TNR: 0.75, F1: 0.71, ROC-AUC: 0.71
- AdaBoost:Accuracy: 63.4%, Precision: 0.70, TPR 0.62, TNR: 0.64, F1: 0.66, ROC-AUC: 0.66
- LR: Accuracy: 76.2%, Precision: 0.81, TPR 0.74, TNR: 0.78, F1: 0.79, ROC-AUC: 0.80
- SVM-Linear: Accuracy: 77.8%, Precision: 0.81, TPR 0.73, TNR: 0.81, F1: 0.81, ROC-AUC: 0.79
- ETC: Accuracy 69.6%, Precision: 0.74, TPR 0.63, TNR: 0.74, F1: 0.73, ROC-AUC: 0.71

	AlSaad 2022[30]

	Predicting emergency department utilization among children with asthma using deep learning models
	Healthcare Analytics
	United States of America
	Retrospective Cohort
	0-18 years
	Three recurrent neural network (RNN) models: bidirectional long short-term memory (BiLSTM), bidirectional gated recurrent unit (BiGRU) and reverse time attention model (RETAIN) vs. baseline multinomial logistic regression model
	EMRs
	87413
	Unspecified
	To predict the frequency of pediatric asthma related emergency department visits in the next 12 months
	- AUC-ROC: multinominal regression; micro 0.81, macro 0.66, RETAIN; micro 0.85. macro 0.72, BiLSTM; micro 0.85, macro 0.71, BiGRU; micro 0.85, macro 0.71 
- AUC-PR: multinominal regression; micro 0.69, macro 0.43, RETAIN; micro 0.74, macro 0.44, BiLSTM; micro 0.74 macro 0.48, BiGRU; micro 0.74, macro 0.46 
- F1 score: multinominal regression; micro 0.63, macro 0.56, RETAIN; micro 0.66, macro 0.60, BiLSTM; micro 0.67 macro 0.60, BiGRU; micro 0.66, macro 0.61 6

	Hogan 2022[38]
	Comparing Artificial Intelligence and Traditional Methods to Identify Factors Associated With Pediatric Asthma Readmission
	Academic Pediatrics
	United States of America
	Retrospective Cohort
	5-18 years
	(Artificial) Neural Networks (ANN); Logistic Regression
	Databases (Biomedical); Claims Data
	18489
	18
	To predict whether a child has an asthma readmission within 180 days from hospitalization discharge
	Overall model AUC of LR: 0.592
AUC in training set of ANN 0.637
AUC in validation set of ANN: 0.636

	Gorham 2023[35]
	Predicting emergency department visits among children with asthma in two academic medical systems
	Journal of Asthma
	United States of America
	Retrospective Cohort
	2-18 years
	Logistic Regression
	EMRs
	26008
	8
	To predict which patients will visit the ED due to asthma exacerbation within one year of a primary care encounter
	AUROC during model training: 0.768 
AUROC against 2018 NCH internal validation: 0.769 
AUROC against EU population without local retraining: 0.684
AUROC against EU population with local retraining: 0.737

	Messinger 2019[41]
	Novel pediatric-automated respiratory score using physiologic data and machine learning in asthma
	Pediatric Pulmonology
	United States of America
	Retrospective Cohort
	2-18 years
	(Artificial) Neural Networks (ANN)
	EMRs; Databases (Biomedical)
	128
	3
	To create pediatric‐automated asthma respiratory score (pARS) by using the manual pediatric asthma score (PAS) as the clinical care standard
	MAE of cascaded ANN with eight hidden layers trained with the balanced group: 1.21

	Habukawa 2020[36]
	A wheeze recognition algorithm for practical implementation in children
	PLOS ONE
	Japan
	Prospective Cohort
	0-13 years
	Decision Tree
	Health Surveys 
	813 recorded sounds from 214 children
	5
	Automatic wheeze sound recognition
	PPV 90.3% 
NPPV 100% 
Sensitivity (wheeze sounds): 100% 
Sensitivity (non-wheeze sounds): 95.7%

	Seol 2021[25]
	Artificial intelligence-assisted clinical decision support for childhood asthma management: A randomized clinical trial
	PLOS ONE
	United States of America
	Randomized Control Trial
	0-17 years 
	Language processing (NLP) algorithms
	Unspecified (for applied ML technique)
	184
	Unspecified
	
To assess the effectiveness and efficiency of Asthma-Guidance and Prediction System (AGPS), an Artificial Intelligence (AI)-assisted CDS tool, in optimizing asthma management
and reducing exacerbation frequency through a randomized clinical trial (RCT).
	- The proportion of children with AE in both groups decreased from the baseline (P = 0.042), specifically 17% to12% in the intervention vs. 25% to 15% in the control group 
- there was no difference in AE frequency between the two groups (12% for the intervention group vs. 15% for the control group, block stratified Odds Ratio: 0.82; 95%CI 0.34–1.96; P = 0.66) during the study
period
- control groups had a reduction in AE in strata 1 and 2 regardless of the availability of AMP and while there was no AE event in the intervention group, 4% of the control group had AE events in stratum 3

	Seol 2020[42]
	Expert artificial intelligence-based natural language processing characterises childhood asthma
	BMJ Open Respiratory Research
	United States of America
	Retrospective Cohort
	Unspecified; 11.8 mean age at last follow up
	Natural Language Processing
	EMRs
	8196
	36
	Assessing whether application of expert artificial intelligence (AI)- based natural language processing (NLP) algorithms for two existing asthma criteria to electronic health records of a paediatric population systematically identifies childhood asthma and its subgroups with distinctive characteristics.
	- Of the 8196 subjects (51% male, 80% white), we identified 1614 (20%), NLP-PAC+/NLP-API+; 954 (12%), 
NLP-PAC+ only; 105 (1%), NLP-API+ only; and 5523 (67%), NLP-PAC−/NLP-API−. 
- Asthmatic children classified as NLP-PAC+/NLP-API+ showed earlier onset asthma, more Th2-high profile, poorer lung function, higher asthma exacerbation and higher risk of asthma-associated comorbidities compared with other groups
- These results were consistent with those based on unsupervised cluster analysis and lab and PFT data of a random sample of study subjects
- In an independent cluster analysis among asthmatics only, three clusters of subjects emerged 
- Subjects in cluster A defined in the purple column and row (n=655) were characterised by a greater likelihood
of persistent asthma, asthma exacerbation, pneumonia, pertussis, Pressure Equilizer (PE) tube, coeliac disease,
viral and streptococcal infection, family history of asthma, eczema, allergic rhinitis, eosinophilia, no smoking during pregnancy, higher SES and spring birth 
- cluster A had a disproportionately higher proportion of NLP-PAC+/NLP-API+ (82%) compared with cluster B (51%) or cluster C (55%)

	Hee 2019[37]
	Development of Machine Learning for Asthmatic and Healthy Voluntary Cough Sounds: A Proof of Concept Study
	Applied Sciences 
	Singapore 
	Prospective Cohort 
	0-16 years 
	Gaussian Mixture Model–Universal Background Model
	EMRs; Health Surveys 
	1192 cough sounds from 178 children
	Unspecified
	To develop and evaluate the sensitivity, specificity, and accuracy of a derived classification model to differentiate asthmatic coughs from normal–voluntary coughs in children compared with physicians’ diagnoses
	Mel-Frequency Cepstral Coefficients (MFCCs), and Constant Q Cepstral Coefficients (CQCCs) represent perceptual cues of the audio spectrum, were extracted from the cough sounds.

Tippet Classification Accuracy (%): MFCCs - normal voluntary cough 78.91, asthma/bronchial reactivity cough 74.03, overall mean 76.24 vs. CQCCs - normal voluntary cough 78.12, asthma/bronchial reactivity cough 86.48, overall mean 82.71
vs. Fused result - normal voluntary cough 82.55, asthma/bronchial reactivity cough 84.76, overall mean 83.76

ROC Accuracy (%): MFCCs - sensitivity 78.39, specificity 75.54, AROC (95% CI) 0.8 vs. CQCCs - sensitivity 81.25, specificity 84.98, AROC (95% CI) 0.9 vs. Fused result - sensitivity 82.81, specificity 84.76, AROC (95% CI) 0.91

	Deliu 2020[33]
	Longitudinal trajectories of severe wheeze exacerbations from infancy to school age and their association with early-life risk factors and late asthma outcomes
	journal of the British Society for Allergy and Clinical Immunology
	England
	Prospective Cohort
	0-16 years 
	K-Means; Logistic Regression
	EMRs; Health Surveys 
	887
	Unspecified
	to derive exacerbation trajectories from a population-based birth cohort with severe wheeze exacerbations confirmed in healthcare records, and examine early-life risk factors of the derived trajectories, and their asthma-related outcomes and lung function in adolescence
	- Shorter duration of breastfeeding was a strong risk factor for frequent excaerbations (FE) (median weeks, FE 0 [IQR: 0-1.75] vs. IE 6 (IQR: 0-20), P < .001) 
- Children in FE cluster were significantly more likely to have eczema in the first 3 years of life, but not thereafter
- By age 8 years, significantly higher proportion of children in the FE cluster had doctor-diagnosed asthma (90% vs. 39%, P = .002)
- The use of ICS was higher among children in FE cluster, particularly at age 3 years (80% vs. 22%, FE vs. IE, P < .001), and children in this cluster were more likely to have persistent wheeze (90% vs. 47%, P = .03)
- At age 8 years, children in the FE trajectory had significantly lower FEV1 and FEV1/FVC (mean [95% CI]: FEV1% predicted, 95.6 [93.3-97.9] vs. 91.1 [80.9-101.3], P < .001; FEV1/FVC 85.1% [83.9-86.2] vs. 78.1% [72.8-83.4], P < .001), and significantly higher FeNO (ppb, mean [95% CI] 11.5 [7.8-19.5] vs. 58.5 [24.2-79.3], P < .001). AHR was higher in FE cluster, but this did not reach statistical significance (P = .08)
- Children in FE cluster were significantly more likely to have current asthma in adolescence than those who wheezed, but did not have severe exacerbations in the first 8 years of life, or those in infrequent excacerbation (IF) cluster (67% FE vs. 30% IE vs. 13% WNE, P < .001). 
- Lung function (ascertained by FEV1% predicted, FEV1/FVC and sRaw) was significantly diminished in the FE cluster, indicating obstructive pattern (FEV1/FVC, mean [95%CI]: 89.9% [89.3-90.5] vs. 88.1% [87.3-88.8] vs. 85.1% [83.4-86.7] vs. 74.7% [61.5-87.8], NW, WNE, IE, FE, respectively, P < .001).
- FEV1 and FEV1/FVC were significantly lower from mid-school age to adolescence in the FE cluster, and declined from age 8 to age 16 years among chil-=dren in this, but not in any other group 



Supplementary Table 2: Summary of Studies Applying Logistic Regression for Prediction of Asthma Exacerbations and Related Outcomes in Children
	Study
	Study Design
	Age Group
	Sample Size
	Features
	ML Objective
	Pertinent Results
	Limitations

	AlSaad 2022 [30]

	Retrospective Cohort 
	0-18 years
	87413
	Unspecified 
	To predict the frequency of pediatric asthma related emergency department visits in the next 12 months
	AUC-ROC: 0.81
AUC-PR: 0.69
F1: 0.56
	EHR databases lacked important variables; Data imbalance - Observational study with diagnoses or conditions that vary over time thus standard approaches for adjustment of confounding are biased

	Bose 2021 [32]
	Retrospective Cohort
	2-5 years
	9934 
	648
	To predict whether a subsequent asthma diagnosis will occur by age 10 years (individual asthma persistence), given clinical input for a child under the age of 5 years with an incident asthma diagnosis
	Mean ANSA: 0.42 
Median ANSA: 0.42 
NPV: 0.32 
Precision: 0.95 
Recall: 0.81
F1 score: 0.88 
Accuracy: 0.81
	Imbalanced data set; generalizability

	Deliu 2020 [33]
	Prospective Cohort
	0-16 years
	887
	Unspecified
	To investigate longitudinal trajectories of severe wheeze exacerbations from infancy to school age
	Two distinct trajectories of severe exacerbations from birth to mid-school age: “Infrequent exacerbations (IE)” (n = 150 [93.7%], median number of exacerbations = 1) and “Early-onset frequent exacerbations (FE)” (n = 10 [6.3%], median exacerbations number = 4). Both trajectories were associated with persistent wheeze, but had different early-life risk factors, and different asthma-related outcomes and lung function in adolescence. Shorter duration of breastfeeding was the strongest early-life risk factor for the early-onset frequent exacerbations (median weeks, FE 0 [IQR: 0-1.75] vs. IE 6 (IQR: 0-20), P < .001). 
	Did not have a replication population; small sample size

	Sills 2021 [43]
	Retrospective Cohort
	4-10 years 
	9,069 ED visits
	13
	To predict the need for hospitalization of pediatric asthma cases using two different ML models; one with data only available at ED triage, the other adding information available one hour into the ED visit.
	Triage timepoint AUC: 0.795
Triage timepoint accuracy: 0.731
Triage timepoint F1 score: 0.564
60 minutes post arrival AUC: 0.823
60 minutes post arrival accuracy: 0.753
60 minutes post arrival F1 score: 0.618
	Lack of valuable patient clinical information, such as weight or heart rate at triage; may include error and noises from data collection; exclusion of patients who received a late medication delivery 

	Hogan 2022 [38]
	Retrospective Cohort 
	5-18 years 
	18489
	18
	To predict whether a child has an asthma readmission within 180 days from hospitalization discharge
	Overall model AUC: 0.592 
	Lack of longitudinal outcome data; lack of risk factors related to asthma readmissions in data set 

	Bhardwaj 2023 [31]
	Retrospective Cohort 
	1-5 years 
	205 
	93 
	To classify two forms of asthma in preschool children (predominantly allergic asthma and non-allergic asthma) 
	Accuracy: 76.2% 
Precision: 0.81 
TPR 0.74 
TNR: 0.78
F1: 0.79
ROC-AUC: 0.80
	Small sample size; due to a high number of missing data points, features were eliminated   

	Gorham 2023 [35]
	Retrospective Cohort 
	2-18 years
	26008
	8
	To predict which patients will visit the ED due to asthma exacerbation within one year of a primary care encounter
	AUROC during model training: 0.768 
AUROC against 2018 NCH internal validation: 0.769 
AUROC against EU population without local retraining: 0.684
AUROC against EU population with local retraining: 0.737
	Data limited to 2 data centres; differences in exclusion at validation site; did not add novel predictors during the external validation


Supplementary Table 3: Summary of Studies Applying Random Forests for Prediction of Asthma Exacerbations and Related Outcomes in Children
	Study
	Study Design
	Age Group
	Sample Size
	Features
	ML Objective
	Pertinent Results
	Limitations

	Krautenbacher
2019 [40]
	Prospective Cohort 
	4-14 years
	260 
	7 modalities
	To predict different childhood asthma phenotypes (healthy children, mild‐to‐moderate allergic asthmatics, and nonallergic asthmatic) based off an assembled questionnaire, diagnostic, genotype, microarray, RT‐qPCR, flow cytometry, and cytokine data as inputs
	AUC for performed prediction on single modalities separately: 0.66 
Overall AUC for complete observations including annotated genes: 0.7 
Overall AUC for complete observations including non-annotated genes: 0.7 


	Small sample size; lack of additional clinical phenotypes, such as distinct wheeze phenotypes was not used 

	Bose
2021 [32]
	Retrospective Cohort
	2-5 years
	9934 
	648
	To predict whether a subsequent asthma diagnosis will occur by age 10 years (individual asthma persistence), given clinical input for a child under the age of 5 years with an incident asthma diagnosis
	Mean ANSA: 0.42 
Median ANSA: 0.44 
NPV: 0.33 
Precision: 0.95 
Recall: 0.82 
F1 score: 0.88 
Accuracy: 0.88
	Imbalanced data set; generalizability

	Deng
2021 [34]
	Prospective Cohort 
	8-14 years 
	74
	84
	To use machine-learning methods to evaluate how indoor environmental conditions at home and school contribute to asthma and allergy-related symptoms
	The top contributing factors identified for asthma were family rhinitis history, plant pollen trigger, bedroom carpet, environmental tobacco smoke (ETS) trigger symptom, and ETS exposure

For allergy-related symptoms, plant pollen trigger, higher paternal education, bedroom carpet, family rhinitis history, and higher maternal education were the strongest contributing factors primary heating with hot water radiator was negatively associated with asthma symptoms 
	Recall/reporting bias; potential for misclassification of asthma and allergy 

	Sills 2021 [43]
	Retrospective Cohort
	4-10 years 
	9,069 ED visits
	13
	To predict the need for hospitalization of pediatric asthma cases using two different ML models; one with data only available at ED triage, the other adding information available one hour into the ED visit.
	Triage timepoint AUC: 0.831
Triage timepoint accuracy: 0.777
Triage timepoint F1 score: 0.635 

60 minutes post arrival AUC: 0.886
60 minutes post arrival accuracy: 0.795
60 minutes post arrival F1 score: 0.689
	Lack of valuable patient clinical information, such as weight or heart rate at triage; may include error and noises from data collection; exclusion of patients who received a late medication delivery

	Hurst
2021 [39]
	Retrospective Cohort 
	5-18 years 
	5982
	12
	To predict whether a child will have an asthma related exacerbation in the forthcoming 30-180 days. 
	AUC of overall model of exacerbation in 30 days: 0.757
AUC of overall model of exacerbation in 90 days: 0.747
AUC of overall model of exacerbation in 180 days: 0.729
	Generalizability; did not account for all variables such as indoor environment and viral exposures 

	Bhardwaj 2023 [31]
	Retrospective Cohort 
	1-5 years 
	205 
	93 
	To classify two forms of asthma in preschool children (predominantly allergic asthma and non-allergic asthma)
	Accuracy: 67.3% 
Precision: 0.71 
TPR 0.59 
TNR: 0.72
F1: 0.72
ROC-AUC: 0.72
	Small sample size; due to a high number of missing data points, features were eliminated   


Supplementary Table 4: Summary of Studies Applying Gradient Boosting for Prediction of Asthma Exacerbations and Related Outcomes in Children
	Study
	Study Design
	Age Group
	Sample Size
	Features
	ML Objective
	Boosting Technique
	Pertinent Results
	Limitations

	Krautenbacher
2019 [40]
	Prospective Cohort 
	4-14 years
	260 
	7 modalities
	To predict different childhood asthma phenotypes (healthy children, mild‐to‐moderate allergic asthmatics, and nonallergic asthmatic) based off an assembled questionnaire, diagnostic, genotype, microarray, RT‐qPCR, flow cytometry, and cytokine data as inputs
	Stochastic gradient boosting
	AUC for performed prediction on single modalities separately: 0.54
Overall AUC for complete observations including annotated genes: 0.77 
Overall AUC for complete observations including non-annotated genes: 0.81 


	Small sample size; lack of additional clinical phenotypes, such as distinct wheeze phenotypes was not used

	Bose
2021 [32]
	Retrospective Cohort
	2-5 years
	9934 
	648
	To compare different ML techniques that can predict the occurrence of early childhood asthma persistence 
	XGB
	Mean ANSA: 0.43
Median ANSA: 0.43 
NPV: 0.34
Precision: 0.95 
Recall: 0.82
F1 score: 0.88 
Accuracy: 0.81
	Imbalanced data set; generalizability

	Hurst
2021 [39]
	Retrospective Cohort 
	5-18 years 
	5982
	12
	To predict whether a child will have an asthma related exacerbation in the forthcoming 30-180 days. 
	XGB
	AUC of overall model of exacerbation in 30 days: 0.761
AUC of overall model of exacerbation in 90 days: 0.752
AUC of overall model of exacerbation in 180 days: 0.077
	Generalizability; did not account for all variables such as indoor environment and viral exposures

	Bhardwaj 2023 [31]
	Retrospective Cohort 
	1-5 years 
	205 
	93 
	To classify two forms of asthma in preschool children (predominantly allergic asthma and non-allergic asthma)
	XGB
	Accuracy: 66.3% 
Precision: 0.69 
TPR 0.54
TNR: 0.75
F1: 0.71
ROC-AUC: 0.71
	Small sample size; due to a high number of missing data points, features were eliminated   


Supplementary Table 5: Summary of Studies Applying Artificial Neural Networks (ANN) for Prediction of Asthma Exacerbations and Related Outcomes in Children
	Study
	Study Design
	Age Group
	Sample Size
	Features
	ML Objective
	Pertinent Results
	Limitations 

	AlSaad 2022 [30]
 
	Retrospective Cohort 
	0-18 years
	87413
	Unspecified 
	To predict the frequency of pediatric asthma related emergency department visits in the next 12 months
	RETAIN: 
AUC-ROC (micro, macro): 0.85, 0.72
AUC-PR (micro, macro): 0.74, 0.44
F1 (micro, macro): 0.66, 0.60

BiLSTM: 
AUC-ROC (micro, macro): 0.85, 0.71
AUC-PR (micro, macro): 0.74, 0.48
F1 (micro, macro): 0.67, 0.60

BiGRU: 
AUC-ROC (micro, macro): 0.85, 0.71
AUC-PR (micro, macro): 0.74, 0.46
F1 (micro, macro): 0.66, 0.61

	EHR databases lacked important variables; Data imbalance - Observational study with diagnoses or conditions that vary over time thus standard approaches for adjustment of confounding are biased

	Messinger 2019 [41]
	Retrospective Cohort
	2-18 years
	128
	3
	To create pediatric‐automated asthma respiratory score (pARS) by using the manual pediatric asthma score (PAS) as the clinical care standard
	MAE of cascaded ANN with eight hidden layers trained with the balanced group: 1.21
	Incomplete data; generalizability; missing variables such as acute bronchodilator use 

	Hogan 2022 [38]
	Retrospective Cohort 
	5-18 years 
	18489
	18
	To predict whether a child has an asthma readmission within 180 days from hospitalization discharge 
	AUC in training set: 0.637
AUC in validation set: 0.636

	Lack of longitudinal outcome data; lack of risk factors related to asthma readmissions in data set



Supplementary Table 6: Summary of Studies Applying Decision Tree for Prediction of Asthma Related Symptoms
	Study
	Study Design
	Age Group
	Sample Size
	Features
	ML Objective
	Pertinent Results
	Limitations

	Deng
2021 [34]
	Prospective Cohort 
	8-14 years 
	74
	84
	To use machine-learning methods to evaluate how indoor environmental conditions at home and school contribute to asthma and allergy-related symptoms
	Asthma symptoms: 
AUC for internal validation: 0.797 
AUC for 10-fold cross-validation: 0.753 
AUC for external validation: 0.812

Allergy-related symptoms: 
AUC for internal validation: 0.819
AUC for 10-fold cross-validation: 0.790
AUC for external validation: 0.829
	Recall/reporting bias; potential for misclassification of asthma and allergy

	Habukawa 2020 [36]
	Prospective Cohort
	0-13 years
	813 recorded sounds
	5 
	Automatic wheeze sound recognition 
	PPV 90.3% 
NPPV 100% 
Sensitivity (wheeze sounds): 100% 
Sensitivity (non-wheeze sounds): 95.7%
	Intensity of wheezes varies among children; For lung sounds that were recorded in a noisy clinic, more rigorous post-processing is required; generalizability between clinical settings and home  


Supplementary Table 7: Summary of Studies Applying Language Processing for Prediction of Asthma Related Symptoms
	Study 
	 Study Design
	Age Group 
	Sample Size 
	Features
	ML Objective
	Pertinent Results 
	Limitations 

	Seol 2020 [42]
	Cross-sectional analysis within a retrospective birth cohort
	0-15 years old
	8196 children

	N/A
	If natural language processing can use EMR data to identify childhood asthma
	n=8196 children, 1679 (21%) had obtained an asthma diagnosis at a mean age of diagnosis at 4.9 (±3.8) years) compared to both algorithms with a mean age at asthma index date = 3.9 (±3.8) years). Children classified as positive under both asthma criteria showed earlier onset asthma (p <0.001), and higher exacerbation rates (p <0.001).
	Laboratory, and lung function data was not available for all study subjects

	Seol 2021 [25]
	Randomized Control Trial
	pediatric (specific age not specified)
	184
	N/A
	To determine if a machine-learning-based predictive analytics for future asthma exacerbation (AE) can reduce AE frequency in children
	Proportion of children with AE in both groups decreased from the baseline (P=0.042), there was no difference in AE frequency between the two groups(12% for the intervention group vs.15% for the control group, Odds Ratio:0.82; 95%CI 0.374–1.96; P= 0.626). A-GPS intervention significantly reduced time for reviewing EHRs for asthma management of each participant (median:3.5min,IQR:2–5),compared to usua lcare without A-GPS (median:11.3min, IQR:6.3–15);p<0.001).
	Generalizability; did not include lung function measures or medications in defining persistent asthma and study outcomes



Supplementary Table 8: Summary of Studies Applying Gaussian Mixture Model for Prediction of Asthma Related Symptoms
	Study 
	 Study Design
	Age Group 
	Sample Size 
	Features
	ML Objective
	Pertinent Results 
	Limitations

	Hee 2019 [37]
	Prospective Cohort Pilot Study
	Under 16 years old
	89 children
	N/A
	Evaluation of the sensitivity and specificity of the classification model to differentiate asthmatic coughs from normal–voluntary coughs in children compared with physicians’ diagnoses
	Sensitively (82.81%),
Specificity (84.76 %) (AROC; 95%CI 0.91; 0.89-0.93). 
	cough sounds from asthmatic children with concurrent
respiratory conditions were excluded 



