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Abstract

Background: Breast cancer is one of the most common malignancies among women worldwide. Patients who do not achieve
a pathological complete response (pCR) or a clinical complete response (cCR) post–neoadjuvant chemotherapy (NAC) typically
have a worse prognosis compared to those who do achieve these responses.

Objective: This study aimed to develop and validate a random survival forest (RSF) model to predict survival risk in patients
with breast cancer who do not achieve a pCR or cCR post-NAC.

Methods: We analyzed patients with no pCR/cCR post-NAC treated at the First Affiliated Hospital of Chongqing Medical
University from January 2019 to 2023, with external validation in Duke University and Surveillance, Epidemiology, and End
Results (SEER) cohorts. RSF and Cox regression models were compared using the time-dependent area under the curve (AUC),
the concordance index (C-index), and risk stratification.

Results: The study cohort included 306 patients with breast cancer, with most aged 40-60 years (204/306, 66.7%). The majority
had invasive ductal carcinoma (290/306, 94.8%), with estrogen receptor (ER)+ (182/306, 59.5%), progesterone receptor (PR)–
(179/306, 58.5%), and human epidermal growth factor receptor 2 (HER2)+ (94/306, 30.7%) profiles. Most patients presented
with T2 (185/306, 60.5%), N1 (142/306, 46.4%), and M0 (295/306, 96.4%) staging (TNM meaning “tumor, node, metastasis”),
with 17.6% (54/306) experiencing disease progression during a median follow-up of 25.9 months (IQR 17.2-36.3). External
validation using Duke (N=94) and SEER (N=2760) cohorts confirmed consistent patterns in age (40-60 years: 59/94, 63%, vs
1480/2760, 53.6%), HER2+ rates (26/94, 28%, vs 935/2760, 33.9%), and invasive ductal carcinoma prevalence (89/94, 95%, vs
2506/2760, 90.8%). In the internal cohort, the RSF achieved significantly higher time-dependent AUCs compared to Cox regression
at 1-year (0.811 vs 0.763), 3-year (0.834 vs 0.783), and 5-year (0.810 vs 0.771) intervals (overall C-index: 0.803, 95% CI
0.747-0.859, vs 0.736, 95% CI 0.673-0.799). External validation confirmed robust generalizability: the Duke cohort showed 1-,
3-, and 5-year AUCs of 0.912, 0.803, and 0.776, respectively, while the SEER cohort maintained consistent performance with
AUCs of 0.771, 0.729, and 0.702, respectively. Risk stratification using the RSF identified 25.8% (79/306) high-risk patients and
a significantly reduced survival time (P<.001). Notably, the RSF maintained improved net benefits across decision thresholds in
decision curve analysis (DCA); similar results were observed in external studies. The RSF model also showed promising
performance across different molecular subtypes in all datasets. Based on the RSF predicted scores, patients were stratified into
high- and low-risk groups, with notably poorer survival outcomes observed in the high-risk group compared to the low-risk
group.
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Conclusions: The RSF model, based solely on clinicopathological variables, provides a promising tool for identifying high-risk
patients with breast cancer post-NAC. This approach may facilitate personalized treatment strategies and improve patient
management in clinical practice.

(J Med Internet Res 2025;27:e69864) doi: 10.2196/69864
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Introduction

Breast cancer remains one of the most prevalent malignancies
among women worldwide, accounting for a significant
proportion of cancer-related morbidity and mortality [1,2].
Despite advancements in treatment modalities, including
neoadjuvant chemotherapy (NAC), a substantial number of
patients do not achieve a complete response (CR). These patients
usually have a worse prognosis compared to those who do
achieve CR (Multimedia Appendix 1) [3]. This underscores the
necessity of developing effective prognostic tools to identify
patients at high risk for adverse outcomes. However, there are
limited studies focusing on developing predictive models for
patients with breast cancer who do not attain a CR following
NAC.

Currently, machine learning has emerged as a powerful tool for
survival analysis, providing significant advantages over
traditional statistical methods [4-6]. Traditional methods use
Cox regression to predict the prognosis of patients with cancer.
However, it is important to note that if the proportional hazards
assumption is violated, the results of the Cox regression model
may be biased. Additionally, Cox regression may struggle to
capture complex, nonlinear relationships between independent
variables and survival time [7]. Furthermore, previous studies
have confirmed that some other models outperform the Cox
regression model. Especially, many studies have shown that the
random survival forest (RSF) model can manage
high-dimensional data, improve the accuracy of survival
predictions, and support personalized treatment strategies, which
typically yields the best performance [8-13].

This study aimed to develop and validate an RSF model to
predict survival risk in patients with breast cancer who fail to
achieve a CR after NAC, comparing its performance with
traditional Cox regression. We hypothesized that the RSF model
would offer a reliable tool for clinicians to stratify patients based
on predicted survival risks, ultimately supporting more informed
treatment decisions and enhancing patient management
outcomes.

Methods

Recruitment and Study Design
Patients diagnosed with breast cancer at the First Affiliated
Hospital of Chongqing Medical University from January 2019
to 2023 were comprehensively reviewed. We selected patients
who underwent NAC for subsequent analysis. After
administering 4-8 cycles of NAC, clinicians, radiologists, and
pathologists evaluated the treatment response. A clinical
complete response (cCR) was defined as the complete

disappearance of all tumor lesions, as confirmed by imaging
examination, lasting for a minimum of 4 weeks [14]. A
pathological complete response (pCR) was defined as the
absence of any residual invasive tumor in both the breasts and
axillary lymph nodes (ypT0ypN0) [15]. Patients without a cCR
or pCR were enrolled in this study. The adjuvant treatment
process was determined according to the guidelines outlined by
the Chinese Society of Clinical Oncology (CSCO) and the
National Comprehensive Cancer Network (NCCN) [16,17].
Pathological assessment was conducted according to the
American Society of Clinical Oncology guidelines (Multimedia
Appendix 2) [18-20].

Initially, we established an RSF model using the entire patient
cohort. Subsequently, we examined the relationship between
clinicopathological variables and survival outcomes using
univariate and multivariate Cox regression analyses. We then
constructed a Cox regression model using the variables selected
based on P<.05 from the multivariate analysis. Furthermore,
the Duke University Breast Cancer dataset [21] and data from
the Surveillance, Epidemiology, and End Results (SEER) [22]
database were used as validation cohorts.

Ethical Considerations
This study was conducted in accordance with the principles of
the Declaration of Helsinki and was approved by the Ethics
Committee of the First Affiliated Hospital of Chongqing
Medical University (ID: 2020–59). Compensation and informed
consent were waived due to the retrospective nature of the study
and the use of deidentified patient data.

Follow-up
All patients included in this study were interviewed through
either outpatient visits or telephone consultations. The follow-up
period extended from discharge until April 30, 2024.
Disease-free survival (DFS) was selected as the primary metric
for assessing the patient survival duration. The DFS was defined
as the time from surgery to the occurrence of breast cancer
recurrence, the diagnosis of a new primary cancer, or death from
any cause, whichever comes first.

Model Development: RSF and Cox Regression
The RSF model was constructed using the randomForestSRC
package in R (R Foundation for Statistical Computing). A
starting model was trained on the entire cohort. The following
hyperparameters were configured: number of trees (ntree), node
size, mtry, and independent variables. The model underwent 2
key adjustments: (1) hyperparameter tuning via cross-validation
to optimize performance and (2) permutation-based variable
importance scoring to identify significant predictors. Following
optimization, the final model was built. Additionally, variables
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selected based on P<.05 from the multivariate Cox regression
analysis were incorporated into the Cox regression model.

External Validation
In this study, external validation datasets were obtained from
2 sources: the Duke breast cancer dataset and the SEER dataset.
For the Duke dataset, the inclusion criterion was that patients
had undergone NAC. The exclusion criteria were (1) any
missing or unknown information and (2) patients who achieved
a CR to NAC. For the SEER dataset, the inclusion criteria were
(1) patients registered in registry 8 and (2) patients diagnosed
with a malignant breast tumor. The exclusion criteria were (1)
patients with more than 1 primary tumor, (2) any missing
information or records marked as “Unknown,” (3) patients who
did not undergo NAC, and (4) patients who achieved a CR to
NAC. In the Duke dataset, survival time was evaluated as
recurrence-free survival (RFS), whereas the SEER dataset used
overall survival (OS) as its measure.

The performance of the RSF and the Cox regression model was
assessed using the 2 validation cohorts. Key metrics, including
the concordance index (C-index), 95% CIs, and the integrated
Brier score, were calculated to evaluate the models’ predictive
accuracy and calibration. Survival curves were generated using
the Kaplan-Meier (K-M) method, stratified by risk group
identified using the RSF and the Cox regression model.
Additionally, variable importance plots were created to illustrate
the contribution of each variable to the models. Finally, the
models were validated in the Duke and the SEER dataset.

Model Performance Validation in Different Molecular
Subtypes
We further used the RSF model to assess the performance of
various molecular subtypes across different datasets, with the
results illustrated through time-dependent receiver operating
characteristic (ROC) curves. Patients with different subtypes
in these datasets were categorized into high- and low-risk groups
based on the model’s predictions. The survival differences
between these 2 groups were evaluated using K-M curves.

Statistical Analysis
We conducted statistical analysis using RStudio (R version
4.4.2). All independent variables were categorized and presented
as absolute counts. To compare categorical data, we performed
the chi-square test. The survival time was a continuous variable
and was presented as the median (IQR). The Cox proportional
hazards model was used to identify prognostic factors through
both univariate and multivariate analyses. For the development
of the RSF model, we used the randomForestSRC package,
while the cph function was used to construct the Cox regression
model. The ROC curve and decision curve analysis (DCA) were
used to display the performance of the models. Survival analysis
was performed using K-M curves, with differences between
groups evaluated using the log-rank test. In this study, P<.05
was considered indicative of a statistically significant difference.

Results

Demographic and Clinical Characteristics
The study flowchart and patient inclusion process are illustrated
in Figure 1. The internal cohort comprised 306 patients with
breast cancer with the following characteristics: the majority
(204/306, 66.7%) were aged 40-60 years, 94.8% (290/306) had
invasive ductal carcinoma, and receptor status analysis revealed
59.5% (182/306) estrogen receptor (ER)+, 58.5% (179/306)
progesterone receptor (PR)–, and 30.7% (94/306) human
epidermal growth factor receptor 2 (HER2)+ cases. The most
prevalent staging was T2 (185/306, 60.5%), N1 (142/306,
46.4%), and M0 (295/306, 96.4%). Over a median follow-up
of 25.9 months (IQR 17.2-36.3), 17.6% (54/306) patients
experienced disease-related events. External validation cohorts
demonstrated comparable patterns, with the Duke dataset (N=94)
showing a similar age distribution (59/94, 63%, aged 40-60
years), HER2-positivity rate (26/94, 28%), and hormone receptor
(HR) profiles, while the SEER cohort (N=2760) maintained
consistent invasive ductal carcinoma predominance (2506/2760,
90.8%) and staging trends. Full demographic details are
presented in Table 1.
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Figure 1. Flowchart of this study. ER: estrogen receptor; HER2: human epidermal growth factor receptor 2; MRI, magnetic resonance imaging; NAC:
neoadjuvant chemotherapy; PR: progesterone receptor; TNM: tumor, node, metastasis; SEER: Surveillance, Epidemiology, and End Results.
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Table 1. Baseline characteristics of patients in the internal, Duke, and SEERa datasets.

SEER dataset (N=2760)Duke dataset (N=94)Internal dataset (N=306)Characteristics

Age (years), n (%)

732 (26.5)14 (14.9)42 (13.7)>60

548 (19.9)21 (22.3)60 (19.6)≤40

1480 (53.6)59 (62.8)204 (66.7)40-60

Histological type, n (%)

2506 (90.8)89 (94.7)290 (94.8)Invasive ductal carcinoma

254 (9.2)5 (5.3)16 (5.2)Other

ERb, n (%)

686 (24.9)40 (42.6)124 (40.5)Negative

2074 (75.1)54 (57.4)182 (59.5)Positive

PRc, n (%)

1093 (39.6)52 (55.3)179 (58.5)Negative

1667 (60.4)42 (44.7)127 (41.5)Positive

HER2d, n (%)

1825 (66.1)68 (72.3)212 (69.3)Negative

935 (33.9)26 (27.7)94 (30.7)Positive

Molecular subtype, n (%)

466 (16.9)29 (30.9)73 (23.9)HRe–/HER2–

182 (6.6)11 (11.7)50 (16.3)HR–/HER2+

1359 (49.2)39 (41.5)139 (45.4)HR+/HER2–

753 (27.3)15 (16.0)44 (14.4)HR+/HER2+

Tf, n (%)

449 (16.3)16 (17.0)36 (11.8)1

1458 (52.8)58 (61.7)185 (60.5)2

578 (20.9)17 (18.1)51 (16.7)3

275 (10.0)3 (3.2)34 (11.1)4

Nf, n (%)

929 (33.7)41 (43.6)43 (14.1)0

1232 (44.6)40 (42.6)142 (46.4)1

343 (12.4)7 (7.4)61 (19.9)2

256 (9.3)6 (6.4)60 (19.6)3

Mf, n (%)

2677 (97.0)93 (98.9)295 (96.4)0

83 (3.0)1 (1.1)11 (3.6)1

S tatus , n (%)

2364 (85.7)83 (88.3)252 (82.4)0

396 (14.3)11 (11.7)54 (17.6)1

35.0 (15.5-64.0)50.2 (29.3-66.2)25.9 (17.2-36.3)Survival time, median (IQR)

aSEER: Surveillance, Epidemiology, and End Results.
bER: estrogen receptor.
cPR: progesterone receptor.
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dHER2: human epidermal growth factor receptor 2.
eHR: hormone receptor.
fTNM: tumor, node, metastasis.

Construction of the RSF Model
Initially, we integrated all independent variables into the RSF
model, setting the number of trees (ntree) to 2000. Our findings
indicated that the model stabilized when ntree reached 1000.
Additionally, variable importance analysis revealed that the
variable T stage had significant negative effects on the model’s
performance (Multimedia Appendix 3). Consequently, we
adjusted ntree to 1000 and included age, histological type, ER,

PR, HER2, N stage, and M stage as independent variables to
reconstruct the RSF model. Through hyperparameter tuning,
we determined that optimal model performance and
generalization ability were achieved with a node size of 10 and
an mtry of 2 (Multimedia Appendix 4). The ROC curves showed
that in the training set, the AUC of the model at 1, 3, and 5 years
was 0.811, 0.834, and 0.810, respectively (Figure 2A). The
C-index was 0.803 (95% CI 0.747-0.859). The Brier score is
shown in Multimedia Appendix 5.
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Figure 2. ROC curves of the RSF model in the internal (A), Duke (C), and SEER (E) datasets. ROC curves of the Cox regression model in the internal
(B), Duke (D), and SEER (F) datasets. AUC: area under the curve; ROC: receiver operating characteristic; SEER: Surveillance, Epidemiology, and
End Results.

Construction of the Cox Regression Model
Results of the multivariate Cox regression analysis indicated
that age, PR, HER2, N stage, and M stage were significantly
associated with survival risks (Table 2). These variables were
incorporated into the Cox regression model, which yielded an

AUC of 0.763, 0.783, and 0.771 at the 1-, 3-, and 5-year marks,
respectively (Figure 2B). The C-index was calculated to be
0.736 (95% CI 0.673-0.799). The Brier score, which was
relatively lower than that of the RSF model at each time point,
is presented in Multimedia Appendix 5.
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Table 2. Cox regression of clinicopathological variables.

Multivariable hazard ratio (95% CI); P valueUnivariable hazard ratio (95% CI); P valuePatients (N=306), n (%)Variables

Age (years)

42 (13.7)>60

0.45 (0.18-1.12); P=.090.36 (0.15-0.87); P=.0260 (19.6)≤40

0.48 (0.24-0.97); P=.040.40 (0.20-0.77); P=.01204 (66.7)40-60

Histology

290 (94.8)Invasive ductal carcinoma

0.30 (0.04-2.25); P=.240.31 (0.04-2.22); P=.2416 (5.2)Other

ERa

124 (40.5)Negative

1.05 (0.53-2.09); P=.880.74 (0.44-1.27); P=.28182 (59.5)Positive

PRb

179 (58.5)Negative

0.45 (0.21-0.96); P=.040.54 (0.30-0.98); P=.04127 (41.5)Positive

HER2c

212 (69.3)Negative

0.45 (0.23-0.87); P=.020.54 (0.29-1.02); P=.0694 (30.7)Positive

T d

36 (11.8)1

1.47 (0.57-3.82); P=.421.42 (0.55-3.63); P=.47185 (60.5)2

1.26 (0.40-3.93); P=.691.35 (0.44-4.14); P=.6051 (16.7)3

1.58 (0.49-5.08); P=.451.73 (0.56-5.29); P=.3434 (11.1)4

Nd

43 (14.1)0

1.65 (0.55-4.93); P=.371.84 (0.63-5.38); P=.26142 (46.4)1

2.06 (0.65-6.58); P=.222.75 (0.89-8.55); P=.0861 (19.9)2

3.36 (1.10-10.24); P=.034.34 (1.45-12.96); P=.0160 (19.6)3

Md

295 (96.4)0

2.74 (1.03-7.25); P=.043.30 (1.31-8.31); P=.0111 (3.6)1

aER: estrogen receptor.
bPR: progesterone receptor.
cHER2: human epidermal growth factor receptor 2.
dTNM: tumor, node, metastasis.

Model Validation
A total of 94 patients from the Duke dataset and 2760 patients
from the SEER dataset were included in the analysis; the
selection process is displayed in Figure 1. For the RSF model,
the AUC for the Duke dataset was 0.912 at 1 year, 0.803 at 3
years, and 0.776 at 5 years, as illustrated in Figure 2C, while
the AUC values for the SEER dataset were 0.771 at 1 year,
0.729 at 3 years, and 0.701 at 5 years, as shown in Figure 2E.
For the Cox regression model, the AUC for the Duke dataset
was 0.869 at 1 year, 0.759 at 3 years, and 0.706 at 5 years, with

the corresponding ROC curves presented in Figure 2D. For the
SEER dataset, the AUC values were 0.823 at 1 year, 0.756 at
3 years, and 0.731 at 5 years, as depicted in Figure 2F.

Comparison of the RSF and Cox Regression Model
Multimedia Appendix 6 presents DCA curves for the 2 models
at 1-, 3-, and 5-year intervals across all datasets. In both the
training set and the Duke dataset, patients derived greater
benefits from the RSF model compared to the Cox regression
model. Conversely, in the SEER dataset, the benefits for patients
using both models were comparable. Furthermore, in the training
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set, the RSF model identified a predictive cut-off value of 8.70
to categorize patients into high- and low-risk groups
(Multimedia Appendix 7). Survival analysis demonstrated that
the prognosis for the high-risk group was significantly worse
than that for the low-risk group (Multimedia Appendix 8). This
cut-off value was also applied to classify patients from both the
Duke and SEER datasets into high- and low-risk groups.
Survival analysis indicated that patients in the high-risk group
had poorer prognoses compared to those in the low-risk group
across both datasets (Multimedia Appendix 8). Similarly, the
Cox regression model established a predictive cut-off value of
0.27 in the training set to differentiate between high- and
low-risk groups (Multimedia Appendix 7). Survival analysis
yielded results consistent with those obtained using the RSF
model (Multimedia Appendix 8).

Performance of the RSF Model Among Different
Molecular Subtypes
We conducted a performance evaluation of the RSF model
across various molecular subtypes. The ROC curves indicated
that in the internal dataset, the RSF model achieved an AUC of
1.000 for both 1- and 3-year survival rates and 0.748 for the
5-year survival rate for the HR+/HER2+ subtype. For the
HR+/HER2– subtype, the AUC values were 0.872 for the 1-year,
0.699 for the 3-year, and 0.778 for the 5-year survival rate. For
the HR–/HER2+ subtype, the AUC values were 0.639 for the
1-year, 0.845 for the 3-year, and 0.698 for the 5-year survival
rate. For the HR–/HER2– subtype, the AUC values were 0.681
for the 1-year and 0.832 for the 3-year survival rate. Consistent
trends were observed in the SEER and Duke validation datasets
(Multimedia Appendix 9). The K-M curves further demonstrated
the RSF model’s ability to stratify patients into distinct high-
and low-risk groups across all 4 molecular subtypes in both
internal and SEER datasets. In the Duke dataset, although no
statistically significant difference was observed in the
HR−/HER2− subtype, low-risk patients still exhibited higher
RFS compared to high-risk patients (Multimedia Appendix 10).

Discussion

Principal Findings
In this study, our key findings demonstrated that the RSF model
outperforms Cox regression in predicting survival risk for
nonresponders post-NAC, with validated generalizability across
external cohorts. The RSF model also demonstrated consistent
effectiveness when analyzing various molecular subtypes. The
findings highlight the potential of machine learning techniques,
particularly the RSF, in enhancing prognostic accuracy and
guiding clinical decision-making in oncology.

Previous research has demonstrated that achieving a pCR
following NAC is associated with significantly improved
event-free survival and OS [3]. Consequently, numerous studies
have concentrated on predicting tumor responses to NAC. For
instance, Zhao et al [23] constructed machine learning models
to predict the pCR to NAC based on clinicopathological
variables. Similarly, Zhang and coworkers [24-30] developed
machine learning models that incorporated clinicopathological
features, radiomic features, and pathomic features to forecast

the pCR following NAC. Additionally, Sammut et al [31] and
Chen et al [32] created models using multi-omics data. These
studies have highlighted the substantial value of machine
learning models in predicting patients’ responses to NAC.

However, as previous research has confirmed that patients with
no pCR tend to have a worse prognosis and a higher risk for
adverse events, it is important to note that few studies have
explored risk stratification among those patients. In one of our
earlier studies, we tried to develop a random forest model to
predict event occurrence among patients with breast cancer with
no response to NAC [33]. At the same time, we aimed to create
a model that directly predicted patients’ survival risk. The RSF
algorithm integrates random forests with survival analysis,
enabling the prediction of individual event probabilities and
survival time. Compared to the traditional Cox regression, the
RSF model offers several advantages: It is not limited by the
proportional hazards assumption, it can effectively handle
high-dimensional data, and it demonstrates strong generalization
capabilities [11]. Liao et al [9] developed a prediction model
using 10 machine learning algorithms across 101 combinations
to forecast cancer-related mortality in patients with gastric
neuroendocrine neoplasms. They finally found that the RSF
model obtains the highest AUC value [9]. Similar results have
been found in other studies [8,10-13]. In our study, we also
found that the RSF model outperforms the Cox regression
model, a finding that was further validated using the Duke
dataset.

Strengths
One of the strengths of our study is the robust validation of the
RSF model using 2 independent validation cohorts. The C-index
demonstrated the model’s predictive accuracy, suggesting that
it can reliably stratify patients based on their survival risk.
Additionally, the survival time metrics varied across datasets:
the training set used DFS, whereas the Duke dataset was based
on the RFS, and the SEER dataset used OS. The DFS status
encompassed disease recurrence, new primary diseases, and
death. Consequently, the model demonstrated strong adaptability
across datasets that use these endpoints as status indicators.
Therefore, we suggested using DFS to construct time-to-event
predictive models in future studies. Another issue pertains to
the selection of independent variables. Initially, we tried to
develop the RSF model using variables selected through
multivariate analysis in the Cox regression; however, the results
were not satisfactory. Subsequently, we used the variable
importance metrics from the RSF algorithm to identify variables
that were ultimately included in the model. Hence, we also
suggested using a variable selection method that aligns with the
specific model being used.

Limitations
To the best of our knowledge, our study demonstrated that a
more complex algorithm could effectively predict the survival
risk of patients with breast cancer without a CR post-NAC,
based solely on clinicopathological variables. Nevertheless,
there are limitations of our study. First, the sample of the training
set was relative small, which might affect variable selection and
the parameters set. Second, the follow-up duration in our study
was relatively short, with only a limited number of patients
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followed for more than 5 years. This might have constrained
the models’ ability to accurately predict long-term prognosis.
Third, the retrospective nature of the data collection might
introduce biases, and the findings should be interpreted with
caution. Fourth, we included only a limited subset of
clinicopathological variables, and further exploration is needed
to assess the potential inclusion of additional variables.
Additionally, we noted that the performance of the 2 models
was comparable in the SEER dataset, with the Cox regression
model performing slightly better. This might be attributed to
the limited training sample size, which could restrict the
performance of the RSF model. Nevertheless, our findings
confirm the potential of the RSF model for predicting prognosis
using clinicopathological variables in patients. Further
prospective study is necessary to confirm its applicability.

Moreover, the RSF model is particularly well suited for handling
higher-dimensional variables. Thus, future studies should also
explore the integration of radiomics, pathomics, and molecular
data to enhance the predictive power of the model [34-36].

Conclusion
Our study highlighted the feasibility and effectiveness of using
an RSF model based exclusively on clinicopathological variables
to predict survival risk in patients with breast cancer who do
not achieve a CR after NAC. This approach could enhance
clinical practice by assisting oncologists in identifying high-risk
patients who might benefit from more aggressive treatment
strategies or closer monitoring. As we continue to refine and
validate this model, we anticipate that it would significantly
contribute to the advancement of personalized medicine in breast
cancer care.
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