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Abstract

Background: Creating a sustainable, patient-centered health care system necessitates integrated supply chains supported by
information technologies. However, achieving interoperability among various devices and systems remains a significant hurdle.
Our research highlights the need for systematic reviews that address health care interoperability as a holistic knowledge domain.
Notably, we observed a lack of studies that outline its structure or develop a comprehensive, high-order facet-based taxonomy
from the perspective of supply or value chains. This study aims to address that gap.

Objective: The primary aim of this study is to elucidate the knowledge structure within the extensive domain of health care
interoperability, with an emphasis on trending topics, critical hot spots, and the categorization of significant issues. Furthermore,
we aim to model the higher-order elements of a taxonomy for health care interoperability within the context of the health care
value chain framework.

Methods: We used both quantitative and qualitative methodologies. The PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) framework guided our selection process. We examined 6 databases—Scopus, Web of Science,
IEEE Xplore, Embase, Cochrane, and PubMed—focusing on journal articles and gray literature published from 2011 onward.
Articles were screened using predefined eligibility criteria. Quantitative bibliometric techniques—including cluster, factor, and
network analyses—were applied to explore the structure of the knowledge. A subset of articles was selected for qualitative
synthesis using an iterative coding process to develop a higher-order facet-based taxonomy.

Results: We identified 370 articles for quantitative analysis. The bibliometric analysis revealed 2 major clusters. Key terms in
the first cluster included interoperability, electronic health record, and eHealth—with betweenness centralities of 70.971, 59.460,
and 12.000, respectively, and closeness centralities of 0.047, 0.043, and 0.034, respectively. In the second cluster, the most relevant
terms were IoT, blockchain, and health care—with betweenness centralities of 6.765, 2.581, and 1.283, respectively, and closeness
centralities of 0.034, 0.030, and 0.030, respectively. Factor analysis explained 59.46% of the variance in a 2-factor model, with
the first dimension accounting for 36.78% and the second dimension for 22.68%. The qualitative review of 79 articles yielded a
taxonomy with 4 higher-order facets: object (what is shared), source (what mechanism is used), ambit (space covered), and content
(technology primarily involved). Each facet extended to a third level of classification.

Conclusions: The comprehensive domain of health care interoperability, viewed through the lens of a sustainable value chain,
encompasses studies that highlight various facets or attributes. These studies underscore the relevance of eHealth within this
knowledge domain and reflect a strong focus on 2 key health information technologies: electronic health records and the Internet
of Things.

(J Med Internet Res 2025;27:e69465) doi: 10.2196/69465
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Introduction

Background and Motivation
Patient centricity—a health care approach that prioritizes
patients’needs, preferences, and experiences, ensuring they are
active participants in their own care and decision-making—has
emerged as a core principle in contemporary health care
practices [1-4], closely linked to the ideas of sustainability and
responsiveness [4]. Empirical evidence supports the importance
of an integrated supply chain in enhancing patient centricity
[5]. Studies have shown a direct and positive relationship
between integrated supply chain performance and patient
centricity, as well as between knowledge exchange and
integrated supply chain performance. In this context, information
technologies play a crucial role [1,4,6], while achieving
interoperability remains a challenge that must be addressed to
improve supply chain integration.

Three main concepts are linked to patient centricity and
advances in digital innovation: (1) service inclusivity, (2) shared
responsibility or management, and (3) remote patient monitoring
[4]. Moreover, these concepts are reflected in 3 prominent roles:
facilitator, connector, and enabler [4]. The first provides patients
with access to services and data, the second enables connection
and information sharing across health care infrastructure, and
the last pertains to remote health care [4]. In this context,
interoperable health care systems—when viewed through the
lens of the supply chain or value chain—play a critical role in
advancing patient centricity. This perspective emphasizes the
need for seamless integration and data exchange among
stakeholders across the health care ecosystem, thereby
supporting holistic patient care and promoting a more integrated
approach to health delivery. The alignment of these systems
with patient-centric principles highlights the importance of
collaboration, efficiency, and improved health outcomes in the
evolving landscape of health care delivery.

The relevance of interoperability for a sustainable,
patient-centric health care value chain requires a holistic
understanding of the domain—one that also addresses the
ongoing debate surrounding the classification of interoperability.
Some authors propose simple classifications comprising 2
elements—syntactic and semantic interoperability [7]—or 3
elements—technical, syntactic, and semantic [8]. Other studies
suggest as many as 8 [9] or even 12 classes [10]. References
can be found to various types of interoperability, including
technical [9,11], syntactic or syntactical [9,11], pragmatic [9,11],
dynamic [9], conceptual [9,11], structural [9], functional [9],
semantic [9,11], platform [11], process [12], organizational
[13], people [14], knowledge [10], services [10], social networks
[10], electronic identity [10], ecosystem [10], and legal
interoperability [15,16].

Previous reviews on interoperability have not focused on
specific industries such as health care, nor have they consistently
provided structured classifications. One review addressed user
model interoperability but lacked a systematic approach [17].
Another study examined evaluation models of interoperability,
categorizing 12 models across 4 granularity levels [10]. While
this study mentioned interoperability attributes, these were not

developed through a systematic procedure [10]. Additionally,
an investigation explored interoperability in the context of the
Internet of Things, presenting a comprehensive taxonomy [11].
Nevertheless, the proposed taxonomy is based on a predefined
model rather than a specific methodology for taxonomy
development [11]. Furthermore, it is not a facet-based taxonomy.

There are also reviews focused on interoperability in health
care. Nevertheless, most of them lack a comprehensive scope
within the domain. They are often limited to a specific health
care service, such as emergency care [18]; a particular
technology, such as blockchain [19]; a type of health information
technology (HIT), such as electronic health records (EHRs)
[20,21]; or a specific type of interoperability, such as semantic
interoperability [16,21-24]. One of these surveys proposed a
taxonomy for the semantic interoperability of health record
systems; however, its development did not follow a specific
methodology [21], and the taxonomy was not facet based.
Similarly, we found reviews focused on specific and relevant
health interoperability standards or technologies [25-29], yet
none of them included a taxonomy.

Three studies addressed the topic of interoperability in health
care using a systematic and broader approach compared with
previous studies [9,30]. The first was a literature review that
assessed 61 records [30], focusing on identifying functional
requirements for data integration. In line with its scope, this
study did not include a quantitative field assessment. The second
study surveyed 36 articles to present the interoperability
requirements for health information systems [9]. This survey
presented word clouds and independently classified and
summarized interoperability standards and architecture
components, all grounded in the literature review [9]. However,
it did not offer a comprehensive organization of the knowledge
domain, as the classifications were not integrated. Notably, the
study did not propose a taxonomy, nor did it follow a specific
methodology for taxonomy development or identify the facets
of the topic. The third study conducted a bibliometric analysis
of system interoperability and data linkage in health care,
including both cluster and network analyses of the topic [31].
The authors selected a sample of 63 journal articles based on
their average citations per year, among other criteria [31]. While
this criterion is relevant, it may exclude more recent articles
that have not yet accumulated sufficient citations, as well as
gray literature—only 1 conference paper was included in the
sample [31]. In line with its approach, the study did not propose
a taxonomy grounded in a literature review. Furthermore, no
studies were found that examined interoperability in health care
from a supply chain or value chain perspective.

Following a review of the relevant studies, we identified a clear
scarcity of systematic reviews that address interoperability in
health care as a comprehensive knowledge domain. There is a
need for a thematic structure and a higher-order, facet-based
taxonomy of knowledge, particularly from the perspective of
the supply or value chain. This study aims to fill that gap.

A systematic literature review has been defined as a type of
research synthesis [32] that employs predefined methods aimed
at reducing bias, thereby producing more reliable results [32].
These reviews incorporate various methods of data analysis
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[33], including quantitative approaches such as bibliometrics
[34], as well as qualitative, in-depth document analysis.
Additionally, the literature suggests systematic methods for
taxonomy development [35,36]. Consequently, a systematic
approach is the most appropriate for our inquiry.

A holistic perspective—currently lacking in the literature and
pursued in this study—helps eliminate knowledge silos and can
be achieved through the integration of both quantitative and
qualitative methodologies. The use of machine learning tools
enables the handling of large volumes of information, offering
critical insights into the knowledge structure of this
comprehensive domain. Additionally, a thorough review of a
selected sample [31,37] supported the development of a
facet-based taxonomy that captures the higher-order facets of
the topic. Previous studies in other subject areas have used
systematic approaches, combining quantitative bibliometric
assessments with taxonomies derived from in-depth literature
reviews [38].

Objectives and Research Questions
This research pursues 2 fundamental objectives. First, it seeks
to vividly map the intricate knowledge structure of the expansive
field of health care interoperability, viewed through the
compelling lens of the value chain. This exploration highlights
not only the critical topics and emerging hot spots that shape
the discourse, but also the complex interconnections that bind
key themes together. Second, it aims to develop a robust,
higher-order framework for a taxonomy of interoperability in
health care, offering a nuanced perspective that underscores its
significance within the evolving landscape of the health care
value chain.

Methods

Search Strategy
This review aims to be both comprehensive and grounded in
high-quality data. To achieve this, the initial search was designed
to capture a broad spectrum of information, including both
peer-reviewed articles and gray literature. However, to ensure
consistency and minimize subjective judgment regarding data
quality and selection bias, we chose to rely on specialized
databases that index only peer-reviewed documents.

Data were retrieved from 6 databases on April 1, 2024, in
accordance with PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) and PRISMA-S
(Preferred Reporting Items for Systematic reviews and
Meta-Analyses—Search extension) guidelines (see Multimedia
Appendix 1) [39,40]. The databases consulted were (1) Scopus,
(2) Web of Science (WoS), (3) IEEE Xplore, (4) Embase, (5)
Cochrane, and (6) PubMed. In Scopus, the search was limited
to the Title-Abstract-Keywords fields; in WoS, it was restricted
to the Topic field; and in Cochrane, it was confined to the Title,
Abstract, and Keyword fields. These limitations were applied
to avoid the inclusion of irrelevant records, as broader
fields—such as References in Scopus—could yield inaccurate
results. For IEEE Xplore, Embase, and PubMed, no field
restrictions were applied, ensuring the most comprehensive
coverage of relevant literature.

The search terms focused on key themes such as interoperability,
value chains, and supply chains within the context of health
care. Notably, multiword terms were searched as exact phrases
to prevent inaccuracies that might result from search systems
interpreting the words separately (Textbox 1).

Textbox 1. Search terms.

1. Interoperability: (interoperability OR inter-operability OR “inter operability” OR “data structure” OR data-structure OR “data standard” OR
data-standard)

2. Health care supply chain: (“health care value chain” OR “health care supply chain” OR e-health OR “health care value-chain” OR “health care
supply-chain” OR “health care supplychain”).

3. The connector between both concepts: AND

The eligibility criteria for document types (articles or conference
papers) were aligned with the structure of each database, aiming
to maintain consistency across sources as much as possible. The
criteria were as follows: (1) conference paper and article for
Scopus; (2) article and proceeding paper for WoS; (3)
conferences and journals for IEEE Xplore; (4) article and
conference paper for Embase; and (5) classical article, clinical
conference, consensus development conference, consensus
development conference (NIH), and corrected and republished
articles for PubMed. Additionally, the review was limited to
English-language materials to reduce potential bias in the
quantitative analysis. These restrictions were applied using the
databases’ built-in filters where available.

The period for the review was set from 2011 to 2024,
considering that one of the most significant standards in health
care—Fast Healthcare Interoperability Resources (FHIR)—was

introduced in 2011 [27]. The eligibility criterion regarding
topical relevance—whether the document focused on the subject
under study—required subjective evaluation by the researchers.
In line with recommendations from the literature, which
emphasize the importance of a peer-review stage to reduce
selection bias [39], this evaluation was conducted in 2 stages
and involved both researchers. Following the approach adopted
in previous studies [41], one of the researchers (CPD) conducted
a thorough review of titles and abstracts to perform the initial
selection. This selection was then peer reviewed by the second
researcher (CAM). Any doubts or discrepancies were discussed
and resolved collaboratively. As this process relied on the review
of titles and abstracts, it was decided in advance to exclude any
articles lacking abstracts. Microsoft Excel was used to manage
and document the screening process. The eligibility criteria are
summarized in Textbox 2.
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Textbox 2. Eligibility criteria.

1. Inclusion criteria

• Article or conference paper

• Focused on interoperability in health care

• English language

• Published in 2011 or later

2. Exclusion criteria

• Editorial, summary, news, or technical discussion

• Not focused on interoperability in health care

• Non-English language

• Published before 2011

The data retrieved from the various databases were first merged,
cleaned, and prepared for analysis. The data cleaning process
involved removing duplicates [42], correcting formatting issues
[43], and addressing other errors such as spelling inconsistencies
[44]. The literature outlines a variety of approaches for this
stage. Some studies have conducted manual data reviews [45],
acknowledging the effort required [46]. Others have utilized
tools such as Microsoft Excel for data cleaning [45,47], while
additional research has developed or used specific software
tools—including custom packages [46,48]—or dedicated
procedures [49]. Notably, some authors have reported that even
after using software tools, additional manual data cleaning was
necessary and subsequently performed [48,50]. Based on this,
we opted to carry out a manual process using Microsoft Excel
for data merging and cleaning. Furthermore, the literature
presents differing views on the criteria for identifying duplicate
records. Some studies rely solely on digital object identifiers
(DOIs) [46], while others combine DOIs with additional
attributes [46], or use alternative attributes entirely [51].
Considering these options, we chose to identify duplicates based
on DOIs, as this is regarded as the most reliable method.

The procedure we followed began with retrieving and exporting
bibliometric data from multiple databases. The data were then
merged according to the structure of the Scopus database.
Subsequently, we conducted data cleaning based on the 2-step
approach recommended in the literature [44]. The first step
involved detecting and removing duplicates, while the second
focused on identifying and correcting errors and inconsistencies
in preparation for bibliometric analysis [44]. Initially, records
without a DOI were excluded. Duplicate records were identified
based on duplicated DOIs, with only 1 instance of each retained.
In the second step, error correction was carried out. This phase
can be conducted using either Microsoft Excel or a
thesaurus-based approach [44]; we applied both methods to
ensure accuracy and consistency. First, we used Microsoft Excel
to correct special characters in the columns identified as relevant
for our study, as flagged by Biblioshiny (K-Synth Srl). Second,
we applied a thesaurus-based approach during the keyword
co-occurrence analysis to standardize terminology. Specifically,
we treated the following terms as synonyms: eHealth and
e-health; electronic health record, electronic health records, and

EHR; IoT and Internet of Things; IoMT and Internet of Medical
Things.

Missing data were also identified and addressed during the data
preparation process. Certain statistical techniques commonly
used in bibliometric studies—such as multiple correspondence
analysis and network analysis—require complete data sets to
avoid potential bias [52,53]. Therefore, it was essential to assess
the extent of missing data [54]. According to the literature,
missing data rates of 10% or less are generally considered low
[54], and in such cases, any imputation strategy may be applied.
One commonly used approach is complete-case analysis, which
involves deleting records with missing data.

Data Analysis and Synthesis
The data synthesis process consists of 2 stages: quantitative and
qualitative. The literature supports the use of both quantitative
and qualitative techniques for the development of classifications
[36]. A key component of bibliometric analysis is the
identification of the most relevant themes or topics within the
domain under study [55,56]. Accordingly, the first stage involves
bibliometric evaluation techniques, including the application
of unsupervised machine learning methods. These are used to
conduct network analysis, clustering, and multiple
correspondence analysis to explore influential topics, emerging
hot spots, and the interrelationships among key issues and
thematic groups. This approach aims to reveal the knowledge
structure of the field from a holistic perspective.

The primary quantitative technique used to reveal the knowledge
structure of the domain was a co-occurrence analysis based on
keyword terms. This method is particularly well-suited for
identifying hot topics and thematic areas [57], and it provides
insights into the most frequently discussed subjects within the
field [38]. As previously mentioned, the study drew data from
several databases, some of which include enriched keywords
generated by proprietary editorial algorithms. To minimize
potential bias introduced by varying editorial criteria or
algorithms, we chose to exclude these enriched keywords and
relied solely on those provided by the authors. The data
assessment was conducted using Biblioshiny, the web interface
of the Bibliometrix R package (version 4.1; R Foundation),
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which provided the tools necessary for performing the
bibliometric analysis.

Cluster and factor analyses are techniques commonly used to
classify elements within a data set. In accordance with the
literature on classification methods [35], which defines the
objective as “grouping objects of interest in a domain based on
common characteristics,” clusters consisting of only a single
element were excluded, as they do not meet this criterion. The
cluster analysis was conducted using the Walktrap algorithm.
We selected this algorithm because it is one of the most utilized
in community detection [58] and “it is often effective at
determining the correct number of communities and assigning
items to their proper community” [58]. Other studies also
acknowledge Walktrap as a well-performed algorithm [59]. In
addition, we decided to perform the analysis based on other
algorithms to avoid possible algorithmic bias. The Leading
Eigenvalues algorithm, which also has a good performance in
community detection [60], was selected.

After the cluster analysis, we performed the factor analysis. It
is relevant to mention that the literature emphasizes that the
distinction between clustering techniques and factor analysis
lies in the way variance is partitioned [61]. In factor analysis,
variance is distributed among factors, and the elements have
loadings on the different factors within the solution [61]. Thus,
we considered it pertinent to present and compare both
solutions—those from the cluster and factor analyses.

The COVID-19 pandemic posed a significant challenge to the
health care sector. Consequently, we examined the thematic
evolution of this field, identifying the year 2020 as a critical
turning point and using it as the final stage of the quantitative
analysis.

The second stage was qualitative and involved a thorough
analysis of the most relevant documents to develop a facet-based
taxonomy. A key characteristic of such taxonomies is that they
incorporate multiple perspectives that describe a topic [62] and,
once completed, enable the use of compound terms—drawn
from the same facet or across multiple facets—to define the
object of interest [62]. As the meta-characteristic of this
taxonomy [35,36], we established that aspects of interoperability
would be integrated under the perspective of the health care
value chain. We adopted an inductive [35],
empirical-to-conceptual approach [36,61], based on an in-depth
review of a selected sample of documents. This approach is
most suitable when the objective is descriptive, as is the case
in our study [36]. The process aimed to formulate a label or
concept representing the type [61] and, in line with the literature,
followed 3 stages [36] applied to the selected sample. First,
each document was read in detail and summarized. Basic and
recurrent topics—or codes—were identified and listed. Second,

the common characteristics of these topics were identified, and
the topics were grouped into categories based on their shared
attributes. It was noted that some categories needed to be
included within others at a higher level. This second step enabled
the identification of the third- and second-level categories, or
subfacets. Third, the second-level subfacets were reviewed and
organized into higher-level dimensions or facets, representing
the first-level facets. One of the researchers (CPD) carried out
these steps and formulated an initial proposal. This proposal
was then peer reviewed and evaluated by the other researcher
(CAM). Any disagreements were discussed and resolved jointly
by both researchers (CPD and CAM) until a final version was
reached.

In addition, we followed the iterative process suggested by the
literature [35,36] and evaluated the fulfillment of ending
conditions [35]. The ending conditions we established were (1)
having a representative and balanced sample composed of both
journal and conference articles, with journal articles forming
the majority to ensure the quality of the taxonomy; and (2)
achieving category saturation—meaning no additional insights
were found [63] regarding the categories under study—given
the qualitative nature of this analysis.

Previous studies that conducted bibliometric evaluations selected
a sample of studies for an in-depth review that follows and
complements the quantitative analysis [37]. To reduce potential
bias stemming from researcher subjectivity in the sample
selection, this study based the sample selection primarily on the
contribution of articles to the factorial solution obtained in the
quantitative assessment.

Results

Overview
The search yielded 1912 documents (Scopus: 610; WoS: 161;
IEEE Xplore: 303; PubMed: 191; Embase: 643; and Cochrane:
4). Among these, 540 were excluded because they were not
articles or conference papers or were not written in English.
Additionally, 212 documents lacked a DOI, and 318 were
duplicates; these were also removed. At the end of the
identification stage, 842 documents remained for screening. It
was found that 112 records were published before 2011, 7 did
not include abstracts, and 319 were not focused on the topic.
These documents were also excluded. Additionally, 34 out of
404 (8.4%) documents lacked authors’ keywords and were
withdrawn, as we applied the complete data imputation strategy.
Ultimately, 370 records remained. The list of these 370 studies
is available on GitHub (see Multimedia Appendix 2). The stages
of document identification, screening, and inclusion are
illustrated in Figure 1 (also see Multimedia Appendix 1).
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Figure 1. Data identification based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework.

Descriptive Statistics
The data spans 370 documents published between 2011 and
2024, distributed across 223 sources. The most relevant source
is Studies in Health Technology and Informatics, and 48 sources
published 2 or more documents. Figure 2 presents the core
sources based on Bradford’s Law. Bradford’s Law is a

bibliometric distribution measure [64] that reflects journal
productivity [64,65], based on the number of accumulated
articles [65]. In this regard, it is worth noting that 17 sources
comprise the nucleus or core sources. Nevertheless, Studies in
Health Technology and Informatics is clearly the most
productive one.
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Figure 2. Most relevant journals that published articles regarding interoperability in health care.

In addition, 358 out of the 370 (96.8%) documents were
coauthored, with an average of 5.38 researchers per study. A
total of 1008 authors’keywords were identified. The trend topic
analysis encompassed 19 concepts. Among them, ontology,
telemedicine, and cloud computing had the oldest mean year
of use, while blockchain, FHIR, and access control had the most
recent (see Figure 3). This pattern reflects the growing relevance
of new technologies, such as distributed ledger technology
(blockchain), in this field. It is not surprising that access control

also gained relevance in recent years, given that blockchain,
due to its immutability and traceability, promises to enhance
privacy and security in access management. Additionally, it is
noteworthy that the FHIR standard gained prominence only
after 2018, despite being issued in 2011 [27]. This may reflect
the time required for a new standard to be widely disseminated.
The average annual scientific production, excluding the year
2024, is 27.76.

J Med Internet Res 2025 | vol. 27 | e69465 | p. 7https://www.jmir.org/2025/1/e69465
(page number not for citation purposes)

Marino & Diaz PazJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Trend topics in interoperability in health care. FHIR: Fast Healthcare Interoperability Resources; HL7: Health Level Seven; IoT: Internet of
Things.

Bibliometric Analysis
We performed the cluster analysis using 2 algorithms to avoid
algorithmic bias: (1) Walktrap—as the main one—and (2)
Leading Eigenvalues—as the confirmatory one. Both solutions
resulted in a 2-cluster configuration based on 23 nodes. Figure

4 depicts the solution generated by the Walktrap algorithm. The
number of members and the specific elements within each
cluster were almost identical in both algorithmic solutions. The
only difference was the placement of the term EHR, which
appeared in different clusters depending on the algorithm used.
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Figure 4. Network and clusters of themes of interoperability in health care.

The first cluster encompassed the terms eHealth, interoperability,
EHR, ontology, semantic interoperability, telemedicine, FHIR,
Health Level Seven (HL7), OpenEHR, standards, health
information, system, semantics, and web services. The second
cluster included the terms IoT, health care, blockchain, cloud
computing, privacy, security, middleware, access control, and
medical services. The network analysis revealed that 3 terms
had the highest influence on node communication within the
entire network. These are interoperability, EHR, and eHealth,
with betweenness centrality scores of 70.971, 59.460, and
12.000, respectively. These terms also contribute to the speed
of information dissemination within the network, showing the
highest closeness centrality scores: 0.047, 0.043, and 0.034,
respectively. All 3 terms are grouped within the first cluster. In
the second cluster, the terms IoT, blockchain, and health care

exhibited the highest levels of betweenness centrality—6.765,
2.581, and 1.283, respectively—as well as the highest closeness
centrality scores: 0.034, 0.030, and 0.030, respectively.

In this section, we analyze the conceptual classification and
structure of this domain using factor analytic techniques,
specifically multiple correspondence analysis. This evaluation
yielded a 2-factor solution, encompassing 2 dimensions that
account for 59.46% of the total variance (inertia). The first
dimension contributed 36.78% to the inertia, while the second
contributed 22.68% (see Figure 5). This 2-factor solution was
corroborated by the topic dendrogram (see Figure 6). Most
themes were associated with the first factor. The second factor
encompassed only 3 elements: sensors, monitoring, and medical
services.
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Figure 5. Factors formed by themes of interoperability in health care.
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Figure 6. Hierarchy of topics of interoperability in health care. FHIR: Fast Healthcare Interoperability Resources; HL7: Health Level Seven; IoT:
Internet of Things.

The thematic evolution of this field, with a critical turning point
in the year 2020, is presented in Figure 7. In the initial phase,
6 themes characterized the domain: eHealth, digital imaging
and communication medicine (DICOM), health care, semantic

interoperability, EHRs, and ontology. By 2020, ontology
persisted as a key term, while the other themes were replaced
by interoperability, openEHR, and blockchain.
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Figure 7. Thematic evolution of interoperability in health care.

Literature Review
The literature review followed a systematic process [35,36] that
encompassed 3 iterations. The initial iteration focused on
documents with contributions of 1.0 or higher, resulting in a
total of 28 articles, including both journal articles and gray
literature. Notably, 15 out of 28 (54%) samples consisted of
conference articles, indicating that the aim of achieving a
balanced and representative sample—with journal articles as
the majority—was not fulfilled. Therefore, additional iterations
were deemed necessary to ensure category saturation. As a
result, it was decided to incorporate 2 more iterations.

The second iteration included only journal articles, selected
based on their contribution to the factorial solution, adding 35
journal articles to the sample. The third iteration comprised a
final selection of 23 conference articles, primarily chosen for
their contribution to the factorial solution and their availability.
Unfortunately, we encountered access issues with 7 articles—1
from the first iteration, 2 from the second, and 4 from the third.

Ultimately, the review included a total sample of 79 out of the
370 (21.4) articles. Among these, 46 of the 79 (58%) documents
were journal articles, while 33 of the 79 (42%) were conference
papers. The list of reviewed articles can be found in Multimedia
Appendix 3, and Figure 8 (see also [7,8,12-15,66-145])
illustrates the outlined systematic procedure.
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Figure 8. Systematic process for facet taxonomy development.

Following our analysis, we confirmed that saturation was
achieved. All facets were identified within the first and second
iterations, with no new facets introduced exclusively in the third

iteration (see Figure 9). Additionally, all other established
conditions were met. Therefore, we concluded that the objective
was fulfilled after completing the 3 iterations.
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Figure 9. Higher order facets of interoperability in health care. EHR: electronic health record; IoMT: Internet of Medical Things; IoT: Internet of
Things.

In developing the facets, we reviewed the themes identified in
the network and cluster analyses. Three facets—Content, Object,
and Source—represented these themes and were designated as
core concerns. The content involved the technology primarily
intervened (encompassing, for example, the themes EHR and
IoT). Object referred to what is shared (reflecting themes such
as semantic interoperability and semantics). Source pertained
to the mechanisms used to achieve interoperability (involving

themes such as blockchain and standards, among others).
Consequently, these 3 facets were considered core concerns.
However, an additional facet, named Ambit, emerged from the
literature review and was regarded as an implicit concern. Figure
9 illustrates the 4 higher-order facets and their subfacets,
extending to the third degree, and Textbox 3 summarizes the
key findings.
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Textbox 3. Summary of key findings on higher-order facets of interoperability in the health care taxonomy.

1. Facet 1. Object

• Sharing meaning (facet 1.1) [12,71-76]

• Sharing data or information (facet 1.2) [14,72,77,78]

2. Facet 2. Source

• Based on approved or agreed standard (facet 2.1) [13,74,79-95]

• Based on technology (facet 2.2) [75,79,80,86,94-116]

• Based on the organization of the knowledge—not on an agreed or approved standard (facet 2.3)

• Ontologies (facet 2.3.1) [14,71,73,117-119]

• Taxonomies or classifications (facet 2.3.2) [73,75]

3. Facet 3. Content

• Comprehensive or integrative (facet 3.1) [83,100,103]

• Focused (facet 3.2)

• Electronic health record (facet 3.2.1) [8,74,77-81,96,97,107,118,120-122]

• Internet of Things or Internet of Medical Things (facet 3.2.2) [7,72,75,76,79,82-84,86,95,98,99,103,105,107,115,116,123-131]

4. Facet 4. Ambit

• Territorial criterion (facet 4.1) [15,109]

• Transnational or cross-border (facet 4.1.1) [7,12,15,74,77,110,130,132]

• National and subnational or local (facet 4.1.2) [13,87,102,109,120,122,133-136]

• Organizational criteria (facet 4.2) [77]

• Interorganizational (facet 4.2.1) [77,96]

• Intraorganizational (facet 4.2.2) [97]

Higher-Order Facets of Interoperability in Health
Care Taxonomy

Facet 1. Object

Overview

This facet alludes to what is shared. In this regard, we adopted
the concept of interoperability as the extent to which devices
and systems exchange data [113] and meaningful information
among them [11,113], allowing systems to work together [113].
Thus, we follow the perspective of system-to-system
interoperability [14].

It is appropriate to note that the literature identifies various
elements that may be shared. At times, the distinction between
what is exchanged and who performs this activity is not
sufficiently clear or consistent. This ambiguity has led to
classifications that include organizations [99] and individuals
[14]. Some authors adopt a broader concept of interoperability
that encompasses social systems [131] and legal interoperability
[15,73]. While we acknowledge the importance of these
perspectives, they were not fully represented in our review.
Therefore, we did not include them in the taxonomy.

Sharing Meaning (Facet 1.1)

Sharing meaning is achieved through semantic interoperability
[12,66-70,146]. It aims to ensure the unambiguous
understanding and interpretation of data by machines [71]. This
level of understanding may range from partial to full semantic
comprehension [113]. Controlled vocabularies [68], including
terminologies, classifications, and ontologies [66,68,111], are
central to this concept. Standards such as OpenEHR and HL7
v3 are proposed to facilitate interoperability. These standards
emphasize the importance of a common model and the need for
flexibility. As a result, standards such as OpenEHR use common
reference models and archetypes to describe medical knowledge
[112]. The common reference model consists of a predefined
set of classes that form the structure of an EHR within the
OpenEHR framework [112], while archetypes incorporate
specific controlled-formal vocabularies—known as domain
concepts—into the model [112]. These domain concepts are
created in consultation with domain experts (eg, physicians)
and can be either newly developed or reused [112]. For example,
in the proposal for a cardiac surgery system based on OpenEHR,
the authors reused existing archetypes such as “Patient
admission and clinical synopsis” and developed new ones such
as “Cardiac surgery” and “Angioplasty cardiac,” in addition to
using the classes from the common reference model. Despite
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these promising features, the authors acknowledge limitations
in the standards and propose alternatives, such as multilevel
modeling [68].

Sharing Data or Information (Facet 1.2)

Sharing data or information encompasses both the exchange of
messages between systems [14]—which does not necessarily
involve understanding their meanings [14]—and the
transmission techniques used [71]. The transmitted data are
technically readable by the recipient [7]. Some authors
distinguish between data sharing (technical interoperability)
and information sharing (syntactic interoperability) [72]. The
present subfacet encompasses both. Examples of protocols for
data sharing include JSON [67] and XML-based protocols [67].

Facet 2. Source

Overview

This facet refers to the mechanisms used to achieve
interoperability. Although standardization may appear to be a
driver for interoperable solutions [13], the literature
acknowledges its limitations and notes that it does not guarantee
interoperability [70,76,113]. Therefore, this facet encompasses
standards along with other sources that contribute to achieving
interoperability.

Based on Approved or Agreed Standard (Facet 2.1)

Standards are defined sets of shared vocabulary or expectations
among systems or devices [73]. The literature acknowledges
the relevance of standards in achieving interoperability but also
highlights their limitations. For instance, some authors argue
that the existence of competing or incompatible standards can
increase the complexity of the topic [13,69,99]. The coexistence
of multiple protocols and standards—and their various versions,
such as HL7 v2 and HL7 v3 [132]—to be applied within the
same solution, combined with the need for efficient and
resource-saving implementations, has led to proposals aimed
a t  h a r m o n i z i n g  o r  a d a p t i n g  t h e m
[75,77,78,84,86,87,95,118,123,132]. Then, the authors
elaborated solutions that combine these standards [84,88,123],
and proposed methods for selecting the most suitable
combination to enhance interoperability rather than diminish it
[13], as well as for adapting them to local contexts [112].

Following the literature [73], health care–focused standards can
be categorized into vocabulary or terminology, for example,
SNOMED-CT (Systematic Nomenclature of Medicine—Clinical
Terms), LOINC (Logical Observation Identifiers Names and
Codes), UCUM (Unified Code for Units of Measure),
International Classification of Diseases (ICD) [71]; content (eg,
HL7); information transport (eg, DICOM [75]); clinical
document architecture (eg, CDA, one of HL7s standards); and
structure tools (eg, FHIR, OpenEHR) [73]. A simpler
classification organizes them into data and device standards
[133]. Furthermore, some standards are more suitable for
specific diseases. For example, DICOM—when complemented
with other standards—holds particular relevance in
ophthalmology, where imaging is central to diagnosis and
treatment [75]. Other diseases discussed in various studies
include dementia [131], infections [71], tuberculosis [68], and
epilepsy [101], among others.

Some standards are widely recognized at the international level
[133], with OpenEHR and FHIR being notable examples.
Additionally, the literature identifies HL7, IHE (Integrating the
Healthcare Enterprise), CEN (European Committee for
Standardization [Comité Européen de Normalisation]), ISO
(International Organization for Standardization), OpenEHR,
IHTSDO (The International Health Terminology Standards
Development Organization), and DICOM as the major
international organizations that aim to establish standards for
interoperability in health care [113,133]. By contrast, some
standards or strategies emerge within the context of a specific
country. For instance, an Italian national-level data-sharing
proposal facilitates the interoperability of general practitioners’
EHRs with a central domain [81,116]. This proposal applied
16 extractors—or termed data miners—that cover a high
percentage of general practitioners’ software to enable
interoperability at the national level [81]. Its effectiveness was
evaluated from both technical and user perspectives, yielding
satisfactory results [81]. The literature also highlights the
challenges involved in harmonizing national, regional, and
transnational standards [130].

It is also relevant to mention that certain design principles or
architectural styles, although not officially approved as
standards, are referenced and adopted in the literature as tools
to support interoperability. One example is the representational
state transfer architectural style [82,83]. For instance,
representational state transfer was used to develop a solution
for interoperable IoT systems based on web technologies [82].
Finally, additional articles that referred to this facet are
[74,76,79,80,85,89].

Based on Technology (Facet 2.2)

Blockchain, middleware, cloud computing, and gateways are
technologies commonly used to achieve or enhance
interoperability. They can be used in combination with standards
but are not necessarily dependent on them. Some proposals even
support the concept of open, nonstandard-based interoperability
[99], incorporating various elements to provide interoperable
solutions [99].

Blockchain is a distributed ledger that enhances patients’ data
ownership [73,100], as well as privacy and security [97], through
its cryptographic features. Simultaneously, the literature has
highlighted its role in enabling interoperability
[73,74,90,91,93,94,96,100,105,120]. In this context, the use of
interplanetary file systems as an off-chain storage solution [90],
encryption techniques such as fully homomorphic encryption
[90], and smart contracts [74,91,105] have also been proposed.
For example, 1 system employs remote data storage as a private
blockchain application, incorporating the most prominent
blockchain platforms—Ethereum and Hyperledger Fabric [73].
This proposal enabled the adoption of blockchain and the
integration of legacy data from physicians and health care
institutions [73]. Its proof of concept was applied to medical
clinic data from Bucharest and yielded satisfactory results [73].

Middleware is also recognized as a technological solution for
achieving interoperability [82,101,109,110,117,131,134,135].
In the context of IoT sensors, middleware facilitates data
retrieval from devices that use diverse proprietary protocols
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[117]. Additionally, middleware offers desirable levels of
adaptability, flexibility, and efficiency in resource usage [109].
Despite its advantages for interoperability, the literature
highlights concerns regarding the proliferation of middleware
platforms lacking common protocols [130].

Cloud computing [12,76,81,95,106-109,116], along with its
predecessor, grid computing [134], and its decentralized
variants, such as fog computing [120] and mobile edge
computing [95], contribute to interoperability through their
protocols [12,76] and technical characteristics—such as offering
a single point of access [108]. These technologies facilitate
integration across systems and devices, enhancing
interoperability in distributed environments. However, the
literature also notes challenges associated with cloud-based
solutions, including architectural heterogeneity in complex
environments such as federated clouds [98] and limitations
related to cloud storage capacity and reliability [102]. These
challenges may lead to a lack of interoperability between cloud
environments [80,98]. To address intercloud interoperability
issues, the literature proposes solutions such as brokering
services based on web standards [80,107], as well as the
application of blockchain technologies [102].

Gateways [70,88,89,92,104,125] can also translate protocols,
filter data, and process it to provide interoperability [92].
Similarly, plug-and-play solutions that function as gateways
are also sources of interoperability [70]. Some authors propose
portable central processing hubs that identify data from different
devices without requiring ontologies or physical changes in
systems [121]. Others base their interoperable solutions on the
data warehouse [69]. Finally, additional articles that referred to
this facet are [80,95,103].

Source Based on the Organization of the Knowledge—Not
on an Agreed or Approved Standard (Facet 2.3)

The literature acknowledges controlled vocabularies as a
relevant tool for achieving interoperability [68], particularly
semantic interoperability. Classifications, taxonomies, and
ontologies are types of controlled vocabularies [68]. Some
controlled vocabularies may be novel and created for specific
purposes, while others are required to adopt a standard—such
as OpenEHR—for particular diseases or local contexts [68,84].
For this reason, different selection criteria, techniques, and
development approaches are applied to enhance their
performance [68]. The subfacets for this source are described
in Textbox 4.

Textbox 4. Source based on the organization of the knowledge—not on an agreed or approved standard.

1. Ontologies (subfacet 2.3.1)

Ontologies provide semantic interoperability [66] by offering concepts and the relationships among them [66], thereby supporting a rational
argument [68]. Unlike technical solutions designed to respond to protocols developed by a set of providers, the aim in this case is to embody a
specific knowledge domain [14,66] or to adapt it [8,84,112].

Different approaches can be used to develop ontologies, such as applying acknowledged methodologies [66,111] and languages [67,77]. Some
proposals reuse existing ontologies [111] to improve the ontology-building process [66]. Nevertheless, certain ontologies are primarily novel
developments [14,67]. Other studies have also incorporated archetypes into the standard to adapt it to specific requirements [8]. The translation
of existing archetypes into other languages has also been considered [77]. Protégé and Pellet Reasoner are implementation tools used to test the
proposed ontologies [67].

The literature also acknowledges vagueness—using imprecise concepts to describe ideas—and uncertainty as inherent features of the medical
domain [113]. This has led to the development of fuzzy ontologies [113]. Among other reasons, the authors argue that fuzzy semantics may be
particularly suitable for this domain, as it aligns more closely with human thinking and reasoning, can handle vague and unclear data, and is
capable of managing both structured and unstructured data [113].

2. Taxonomies or Classifications (subfacet 2.3.2)

Taxonomies or classifications use terminologies in an aggregated manner based on a certain level of abstraction [68]. They may include both
classified and hierarchical concepts. Applying taxonomies in specific contexts may require additional effort. For instance, implementing the
International Classification of Diseases, 10th Revision (ICD-10) term subset in the Brazilian context involved careful selection and technical
development using multilevel health information modeling [68].

Fuzzy logic–based classifications have also been recommended [70]. For example, fuzzy logic can compare vital parameters extracted from
different wearable devices with an established keyword list [70]. This classification approach achieved a high level of accuracy [70]; however,
it was advisable to complement it with natural language learning techniques [70].

Facet 3. Content

Overview

This facet refers to the HIT that is primarily targeted. Most
authors focused on improving the interoperability of a specific
HIT—even if they mentioned others—while some aimed to
integrate multiple HITs [77,94,97]. We refer to the former as
focused and the latter as comprehensive or integrative.
Additionally, we identified some focused solutions with a
specific goal in mind, such as integrating legacy systems or data
[93,96].

Comprehensive or Integrative (Facet 3.1)

The compatibilization of specific HITs has also been proposed.
The literature highlights the challenges in achieving
interoperability between EHR and IoT systems [77,94]. These
challenges stem from the complexity and volume of the data,
the existence of multiple proprietary protocols, and the
topic-focused development of standards such as OpenEHR (for
EHR) and HL7 (for IoT), which require data translation to
ensure compatibility between them [77]. Additional issues relate
to security and privacy concerns [94]. One proposed solution
involved extending existing standards for each HIT to enable
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their joint use [77]. Furthermore, the use of middleware has
also been suggested to improve communication between IoT
and EHR systems [94,97], as sensors generate data that are
stored in and retrieved from EHRs [94], while also enhancing
security.

Focused (Facet 3.2)

The most frequently cited HITs are IoT (or Internet of Medical
Things [IoMT]) and EHR. We based the classification of this

subfacet on these 2 technologies. Telemedicine [126], which
involves the use of HIT to provide health care services remotely
[12], commonly incorporates IoT [122] or IoMT technologies
[12]. For this reason, we did not consider telemedicine an
independent subfacet. Textbox 5 presents the subfacets of
focused.

Textbox 5. Subfacets of focused.

1. Electronic health record (subfacet 3.2.1)

The literature distinguishes between personal health records [73,90,101] and electronic health records (EHRs) [73,90]. While we acknowledge
this distinction, for the purposes of this study, the 2 terms will be used synonymously under the umbrella of EHR. A central concern in this area
involves data ownership [73], data security and privacy [74], and compliance with regulations. OpenEHR standards have been widely adopted
to support interoperability [71,76]. Interoperability issues can arise from differences in software and programming languages [71], the
comprehensiveness of the software, the type of data involved (eg, structured vs unstructured) [71], and other related factors. It is also important
to highlight the relationship between EHRs and emerging developments such as digital twins [72]. The literature notes that EHRs can be connected
to, enhanced by, or even replaced with digital twins [72].

Integrating existing data from EHR legacy systems has also been identified as a significant challenge [71]. For instance, various frameworks and
solutions have been proposed to address data migration from centralized systems to decentralized, blockchain-based architectures [73,115]. Other
studies have tackled the issue of maintaining and reusing information originally created in traditional SQL-based systems when transitioning to
new systems using openEHR, which are oriented toward NoSQL document structures [8]. OpenEHR storage control has also been used to ensure
compatibility with legacy systems [77]. Finally, additional articles that referred to this facet are [69,75,91,112,114,116].

2. Internet of Things or Internet of Medical Things (subfacet 3.2.2)

Internet of Things (IoT) or Internet of Medical Things (IoMT) refers to a network of devices equipped with sensors [12] that can collect health
information from individuals [117]. Interoperability within IoT or IoMT presents specific challenges, such as the use of various proprietary
protocols across sensors and devices [12,67,109,117,119], and data heterogeneity [67], which necessitates data cleaning before sharing to prevent
measurement errors [12]. Additionally, because sensors have limited resources, any proposed solution must be resource efficient [70,92,134].
Plug-and-play [70] and portable [121] solutions have also addressed these efficiency challenges. Authors further propose both direct and indirect
integration of devices: the former is implemented directly on the device, while the latter uses connectors that define communication protocols
[89].

Wearable devices play a central role [12]. This includes devices used for remote health care services [80] as well as those employed within health
care facilities, including critical settings such as emergency care [122]. These solutions can be used to monitor activities performed by healthy
individuals, such as physical activity [99], but they can also be applied to specific conditions, including diabetes [146] and eating disorders [99].

The literature also raises concerns about preserving existing data in the context of IoT or IoMT systems [93,96]. Blockchain-based solutions
have proposed the progressive migration of these data [93,96]. However, this migration presents several challenges, including architectural
differences, data types, user types, and transaction synchronization, among others [93,96]. Finally, additional articles that referred to this facet
are [7,70,73,76-78,97,99,101,110,118,120,123-125].

Facet 4. Ambit

Overview

This facet refers to the scope addressed by interoperability
projects. On the one hand, authors referred to a territorial
perspective [15,103]; on the other hand, the literature
emphasized the role of organizations [103]. We also propose
that this classification offers deeper insights into the concepts
of transverse interoperability—collaboration among stakeholders
involved with the same patient—and vertical

interoperability—the integration of databases and national health
systems [81].

Territorial Criterion (Facet 4.1)

The territorial criterion refers to physical space. The literature
classifies this criterion in various ways. Some authors divide it
into supra-national, national, regional, and local levels [103],
while others distinguish primarily between supra-national,
national, and subnational levels [15]. In this study, we follow
the latter classification. The subfacets are described in Textbox
6.
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Textbox 6. Subfacets of territorial criterion.

1. Transnational or cross-border (subfacet 4.1.1)

In this subfacet, the solutions highlight the importance of connecting to the international landscape [7,12,104]. One example is the PRAISE
network, which brought together experts from multiple countries aiming to evaluate health-associated infections [71]. Specific interoperability
challenges arise in the transnational context—for instance, differing legal environments [69,124], and the need for various local adaptations [71].
Within the European Union, interoperability encounters additional difficulties, such as variations in national regulations and their stringency
[124,126], differing levels of implementation and interpretation of European directives [15,124,126], and the requirement to maintain national
infrastructures [104].

2. National and subnational or local (subfacet 4.1.2)

Some studies are country-specific and may aim to assess interoperability across an entire national territory [81,114,116,127-129] or a part of it
[103,136]. These inquiries may be driven by national initiatives or strategies formulated by governmental agencies [114,127], addressing specific
issues such as older adult health care [127] or challenges related to national-level regulations [116]. In some cases, authors have identified
national-level eHealth systems [96] and their interoperability as a central concern. In other analyses, authors assess the situation and propose
frameworks or guidelines [13,114,127]. A subnational example is the development of a neurosurgical telecounseling network in Veneto, an
Italian region [136]. In this case, national legislation on privacy and security had to be adequate, and the solution’s architecture reflected the
region’s organizational structure. It was divided into 7 groups—1 for each province—while also incorporating and adapting international standards
where necessary [136].

These proposals must address not only the technical aspects of the solution but also take into account the specific realities and limitations of the
country where the solution will be implemented [13,103,114,127,129]. Countries mentioned in the literature include Jordan [114], the United
Kingdom [127], Brazil [68], Kenya and other African nations [13], Pakistan [120], Tanzania [129], and Italy [81]. The authors also emphasized
the challenges that developing countries, such as Tanzania, face in building interoperable systems [129]. Finally, additional articles that referred
to this facet are [96,130].

Organizational Criteria (Facet 4.2)

We considered organizational and territorial levels as distinct
subfacets, as organizations can operate at subnational, national,

or international levels and establish connections with other
organizations [71]. Textbox 7 describes these subfacets.

Textbox 7. Subfacets of organizational criteria.

1. Interorganizational (subfacet 4.2.1)

Solutions may involve various health care institutions, such as different hospitals [71,90], or other stakeholders within the health care supply
chain. These proposals are not limited by territorial boundaries but aim to connect different organizations. The degree of coordination can vary
and may include centralized solutions [71] or decentralized ones, such as those based on blockchain [90].

2. Intraorganizational (subfacet 4.2.2)

Some studies focus not primarily on information sharing among organizations but rather on interoperability between different components of a
health information system [91], such as electronic health records, clinical medical information, and clinical decision support systems [91].

Discussion

Principal Findings
The intricate landscape of knowledge in the field of
comprehensive health care interoperability is clearly illustrated
by 2 distinct clusters of terms that frequently converge. The
results first highlight the importance of eHealth and
interoperability in shaping the field. This finding aligns with
previous studies on the concept of eHealth, which emphasize
understanding “health” as an ongoing process rather than a fixed
outcome, and stress the role of technology as a tool to
support—rather than replace—humans [147]. The 2 clusters
also reflected the focus on 2 HITs associated with
interoperability concerns: (1) EHRs and (2) IoT. Additionally,
standards development—as a response to interoperability
limitations, including those related to semantic
interoperability—was grouped within the first cluster, along
with EHR. This highlights the challenges surrounding EHR
interoperability and underscores the importance of semantic
interoperability and standard-based solutions for this HIT. By

contrast, emerging technologies—such as blockchain,
middleware, and cloud computing, which can also contribute
to interoperability—along with privacy and security, formed
the second cluster, centered around IoT. This grouping reflects
the complexity of interoperability in the IoT domain, which
encompasses concerns related to privacy and security, as well
as a strong interest in leveraging cutting-edge technologies to
address these challenges.

Factorial analysis has revealed 2 fundamental factors that shape
this dynamic field. Central to these are key concepts such as
EHRs, FHIR, and semantic interoperability, which collectively
form the backbone of innovation and collaboration in health
care data exchange. Notably, the factorial solution aligned with
the cluster analysis in identifying 2 distinct conceptual groupings
that characterize the field. However, the specific membership
of elements within each group differed. This discrepancy can
be attributed to the fact that cluster and factor analysis partition
variance through different methodological approaches,
potentially leading to variation in how elements are grouped.
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In addition, the thematic arrangement observed in the
post–COVID-19 context was expected, as health care systems
were compelled to prioritize interoperability to enable pervasive
and responsive services [148]. The urgency to contain the
pandemic underscored the critical need to manage a wide range
of population health data generated by diverse technologies and
systems [148]. Consequently, interoperability emerged as a
central concern. Within this framework, EHRs gained
heightened significance due to their role in systematically
capturing individual health information. Notably, openEHR—a
standard that facilitates multiple levels of interoperability,
including semantic interoperability, and integrates domain
knowledge from medical experts—maintained and even
strengthened its relevance during this period [149]. The literature
also underscored the recognized importance of the IoT during
the COVID-19 pandemic. However, the widespread
implementation of IoT solutions raised significant concerns
related to security and privacy. In this context, blockchain
emerged as a promising technology, offering features such as
decentralization, traceability, transparency, and trustworthiness
to address these challenges effectively [150]. Despite the
considerable disruptions caused by the pandemic, the concept
of ontology retained its relevance, continuing to attract scholarly
attention and exploration.

The highest-order facets of this multifaceted domain—namely,
object, source, content, and ambit—form a foundational
framework that weaves a comprehensive understanding essential
for advancing health care interoperability and ultimately
enhancing patient care.

Limitations and Further Studies
We adopted a systematic approach to data selection and
assessment to minimize bias in our research. Nonetheless,
several limitations must be acknowledged. First, in our effort
to achieve a comprehensive analysis, we consulted and
integrated data from multiple databases. Despite our best efforts
to make well-informed decisions regarding data merging,
cleaning, and preparation, these processes inherently involved
data wrangling and manipulation, which may have introduced
some bias. Second, our study is temporally constrained, as it
focuses on articles published from 2011 onward. While this
scope enabled us to capture the most recent and relevant
developments, it also limited the inclusion of earlier foundational
work. Third, although our literature review was conducted
systematically and informed by the outcomes of factor
assessments, we recognize that the risk of selection bias may
still be present. Fourth, we developed a taxonomy through a
systematic literature review process, making our best efforts to
avoid bias; however, this process was grounded in category
saturation based on a sample. Thus, this taxonomy has yet to
undergo evaluation. Conducting such an evaluation is crucial
for its final application and, potentially, for propounding policies
to improve levels of interoperability in health care. Additionally,
there is a significant opportunity for future research to integrate

the higher-order dimensions we have identified with existing
specialized frameworks. By leveraging faceted taxonomies, we
can provide richer, more nuanced descriptions of this complex
topic, enabling the development of terminology that facilitates
effective integration. Fifth, the creation of ontologies that enrich
the semantic context of these identified facets holds great
promise for advancing our understanding and application of
interoperability in health care. Sixth, technologies used to
provide interoperability from the perspective of the supply chain,
such as blockchains [151-154], present limitations and barriers
that require further study—in terms of both their capability to
provide interoperability and their own interoperability.
Additional studies are also suggested regarding regulation,
which could be seen as a barrier to the standardization of
interoperability [155].

Comparison With Prior Work
A previously conducted bibliometric analysis on interoperability
in health care [31] identified 3 clusters based on abstracts:
eHealth information stakeholder needs—which included terms
such as “electronic health record” and “standard”—eHealth
information quality assessment, and eHealth information
technological governance trends—which incorporated terms
such as “blockchain,” “privacy,” and “security.” By contrast,
our study identified 2 clusters, with the term IoT acquiring high
relevance. One potential reason for this discrepancy may stem
from the selection criteria and the volume of data used—the
earlier analysis assessed 63 articles with the highest citation
counts [31]. Nonetheless, we concur that one of the clusters
identified in our research pertains to EHR and standards, and
the other to the use of advanced technologies, such as
blockchain, to provide solutions, as well as to concerns such as
privacy and security.

In alignment with the survey on interoperability requirements
[9], our study acknowledges the significance of standards as a
crucial attribute of the topic. The classification of standards
presented in the aforementioned survey could enrich the subfacet
related to the thematic scope of standards.

Ultimately, we believe that the contributions of our
study—specifically, the classification of topics through cluster
and network analyses, along with the classification of attributes
based on a comprehensive review of selected studies—can offer
valuable insights for reevaluating the ongoing debate on the
classifications and levels of interoperability in health care.

Conclusion
Our research compellingly illustrates the vast domain of
interoperability in health care, analyzed through the lens of
supply chain management. eHealth emerged as a pivotal topic
within this domain of knowledge, and the interoperability of
EHR and IoT represents 2 key thematic categories encompassing
several efforts. Finally, 4 critical attributes of interoperability
were identified: (1) source, (2) content, (3) ambit, and (4) object.
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