
Original Paper

App-Based Ecological Momentary Assessment of Problematic
Smartphone Use During Examination Weeks in University
Students: 6-Week Observational Study

Ji Seon Ahn1,2,3, PhD; InJi Jeong4, BS; Sehwan Park5, MA; Jooho Lee5, MA; Minjeong Jeon1,2, MA; Sangil Lee6,

PhD; Gangho Do7, BS; Dooyoung Jung4,6*, MD, PhD; Jin Young Park1,2,3*, MD, PhD
1Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
2Department of Psychiatry, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
3Center for Digital Health, Yongin Severance Hospital, Yonsei University Health System, Yongin, Republic of Korea
4Graduate School of Health Science and Technology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
5Medical Research Team, Digital Medic Co., Ltd., Seoul, Republic of Korea
6Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
7Digital Medic Co., Ltd., Seoul, Republic of Korea
*these authors contributed equally

Corresponding Author:
Jin Young Park, MD, PhD
Department of Psychiatry
Yongin Severance Hospital
Yonsei University College of Medicine
363, Dongbaekjukjeon-daero
Giheung-gu
Yongin, 16995
Republic of Korea
Phone: 82 31 5189 8148
Fax: 82 31 5189 8565
Email: empathy@yuhs.ac

Abstract

Background: The increasing prevalence of problematic smartphone use (PSU) among university students is raising concerns,
particularly as excessive smartphone engagement is linked to negative outcomes such as mental health issues, academic
underperformance, and sleep disruption. Despite the severity of PSU, its association with behaviors such as physical activity,
mobility, and sociability has received limited research attention. Ecological momentary assessment (EMA), including passive
data collection through digital phenotyping indicators, offers an objective approach to explore these behavioral patterns.

Objective: This study aimed to examine associations between self-reported psychosocial measures; app-based EMA data,
including daily behavioral indicators from GPS location tracking; and PSU in university students during the examination period.

Methods: A 6-week observational study involving 243 university students was conducted using app-based EMA on personal
smartphones to collect data on daily behaviors and psychosocial factors related to smartphone overuse. PSU was assessed using
the Korean Smartphone Addiction Proneness Scale. Data collected from the Big4+ app, including self-reports on mood, sleep,
and appetite, as well as passive sensor data (GPS location, acceleration, and steps) were used to evaluate overall health. Logistic
regression analysis was conducted to identify factors that significantly influenced smartphone overuse, providing insights into
daily behavior and mental health patterns.

Results: In total, 23% (56/243) of the students exhibited PSU. The regression analysis revealed significant positive associations
between PSU and several factors, including depression (Patient Health Questionnaire-9; odds ratio [OR] 8.48, 95% CI 1.95-36.87;
P=.004), social interaction anxiety (Social Interaction Anxiety Scale; OR 4.40, 95% CI 1.59-12.15; P=.004), sleep disturbances
(General Sleep Disturbance Scale; OR 3.44, 95% CI 1.15-10.30; P=.03), and longer sleep duration (OR 3.11, 95% CI 1.14-8.48;
P=.03). Conversely, a significant negative association was found between PSU and time spent at home (OR 0.35, 95% CI 0.13-0.94;
P=.04).
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Conclusions: This study suggests that negative self-perceptions of mood and sleep, along with patterns of increased mobility
identified through GPS data, increase the risk of PSU, particularly during periods of academic stress. Combining psychosocial
assessments with EMA data offers valuable insights for managing PSU during high-stress periods, such as examinations, and
provides new directions for future research.

(J Med Internet Res 2025;27:e69320) doi: 10.2196/69320
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Introduction

Background
Smartphones are integral to modern life [1-3], embedding
themselves into daily routines owing to their advanced features
[4,5] and seamless connectivity to web-based services [6,7].
Convenience and accessibility make smartphones indispensable
for many, leading to habitual use and, in some cases, unchecked
overreliance [5]. Therefore, excessive smartphone use has raised
concerns over its potential adverse effects [6] on interpersonal
relationships [6,8], physical [5,9-11] and mental health [12],
and daily functioning [13,14]. Research shows that problematic
smartphone use (PSU) is linked to negative outcomes, including
psychopathology [15], poor academic performance [16], and
sleep disturbances [17]. However, PSU is not currently classified
as a distinct disorder in major diagnostic manuals, such as the
Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition, and International Classification of Diseases, 11th
Revision, highlighting the need to comprehensively explore its
impact and influencing factors [14,18,19].

Ecological momentary assessment (EMA) is a methodological
approach to capture people’s moods [20,21] and behaviors in
their natural environments [22-26]. Recently, EMA has
expanded beyond self-report data to include smartphone sensor
data [27]. This is known as passive EMA, which describes EMA
systems where sensor-based data are collected without any user
interaction [26-28]. GPS location–derived features are examples
of passive EMA that allow researchers to explore correlations
with mental health, such as the proportion of time spent at home
[26,29-31]. Recent research has highlighted a significant
relationship between increased time spent at home and the
severity of depressive symptoms in individuals with major
depressive disorder. For instance, an analysis of data from 164
participants using geolocation technology showed that those
who spent more time at home during a 2-week period reported
more severe depressive symptoms [32,33]. These findings
suggest that time spent at home may be an important indicator
of mental health, reinforcing the potential of digital phenotyping.
By conducting frequent assessments in real-world settings,
continuous monitoring through active and passive EMA reduces
potential biases associated with traditional self-report methods,
which often rely on single-point recollection and introduce
inaccuracies [26,28,34,35].

The prevalence of mental health issues among university
students is increasing, particularly during examination periods
when stress levels peak [36,37]. Academic stress, characterized
by increased pressure to perform, has been linked to various
challenges, including heightened risks of depression, anxiety,
and sleep disturbances [6,38-40], and is positively associated
with internet addiction [41,42]. Research indicates that stress
can cause excessive use of internet-based devices, potentially
resulting in PSU [43]. Studies have also shown a correlation
between stress and addictive behaviors related to smartphone
use [36]. Moreover, PSU is highly prevalent among university
students, with prevalence rates ranging from approximately
10.4% to 70%, depending on demographic and regional factors
[44,45]. However, the relationship between PSU and behavioral
patterns, such as physical activity, mobility, and sociability,
remains underexplored. Limited research has examined how
smartphone overuse affects college students’ functionality
during examinations. Thus, predicting mental health outcomes
using smartphone use and sensor data presents a valuable
research opportunity.

Objectives
This study aimed to investigate the prevalence of PSU among
university students and validate previous findings on its
associations with depression, anxiety, and sleep disturbance
during examination periods. Furthermore, it integrated
smartphone sensing data, including GPS-derived behavioral
patterns, with self-reported mental health status to explore the
impact of PSU on behavior and mental health as well as potential
relationships with app-based EMA data.

Methods

Study Design
The study used a prospective observational design to investigate
factors related to PSU among university students for 6 weeks.
The data were collected during the 2 weeks preceding and
following the examinations. Active EMA involved daily
self-reported measures, whereas passive EMA captured real-time
digital phenotypes. Key psychosocial measures were assessed
at baseline and 2 weeks after the examinations (Figure 1).
Additional details of the psychosocial assessment tools and
EMA measures used in this study are provided in Multimedia
Appendix 1.
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Figure 1. Study design, data collection protocol, and study timeline. AUDIT: Alcohol Use Disorders Identification Test; DASS: Depression Anxiety
Stress Scale; EMA: ecological momentary assessment; GAD-7: Generalized Anxiety Disorder-7; GSDS: General Sleep Disturbance Scale; K-SAPS:
the Korean Smartphone Addiction Proneness Scale; PHQ-9: Patient Health Questionnaire-9; SIAS: Social Interaction Anxiety Scale.

Participants
Participants were recruited in 2 waves from the Ulsan National
Institute of Science and Technology in Korea during the fall
semester, using both web-based and offline posters. Eligibility
criteria included being a university student, aged between 19
and 28 years, a native Korean speaker, and owning a smartphone
with either Android or iOS. Participants who objected to data
collection or had recent suicidal ideation, severe mental illnesses
(eg, schizophrenia and intellectual disability), or organic brain
disorders were excluded. The study included a web-based survey
that collected basic demographic information and responses
using validated psychosocial screening tools. All participants
provided informed consent, ensuring anonymity. In the first
wave, data from 135 participants were collected from September
25 to November 6, 2023, whereas in the second wave, from
November 20 to December 31, 2023, data from 108 participants
were collected. On completion, participants received a
personalized report summarizing their psychosocial assessments
and digital phenotype analyzed by a psychiatrist.

Procedures

Web-Based Self-Report Questionnaires
Validated instruments were used to assess the psychological
constructs related to smartphone use and mental health. The
Korean Smartphone Addiction Proneness Scale (K-SAPS)
evaluates excessive smartphone use through 15 items rated on
a 4-point scale (ranging from 1 [not at all] to 4 [extremely]),
categorizing use as high risk (scores ≥44), at risk (scores 40-43),
or normal use (scores <40), with a Cronbach α of 0.814 [46].

The Patient Health Questionnaire-9 (PHQ-9) measured
depressive symptoms over the past 2 weeks with 9 statements
rated from 0 (not at all) to 3 (nearly every day), yielding a total
score between 0 and 27, with higher scores indicating more
severe depression [47].

Anxiety levels were assessed using the Generalized Anxiety
Disorder-7 (GAD-7), which comprises 7 items scored from 0

to 3, with the total score reflecting the severity of anxiety
symptoms [48].

To gauge social interaction anxiety (SIA), the Social Interaction
Anxiety Scale (SIAS), comprising 20 items rated from 0 (not
at all) to 4 (extremely), was used [49].

The Alcohol Use Disorders Identification Test (AUDIT) was
used to screen for alcohol consumption and dependence using
10 statements. Scores >20 for men and >10 for women indicated
high-risk drinking, with a Cronbach α of 0.92 [50].

Sleep quality was assessed using the General Sleep Disturbance
Scale (GSDS), comprising 21 items on sleep problems
experienced over the previous week, rated from 0 (never) to 7
(every day), with total scores ranging from 0 to 147; scores ≥43
indicate significant sleep disturbances [51].

Finally, stress levels were measured with the Depression Anxiety
Stress Scales (DASS), which includes 14 items rated on a
4-point scale, ranging from 0 (did not apply to me at all) to 3
(applied to me very much or most of the time), with higher total
scores indicating greater stress levels [52].

Smartphone Sensing and EMAs
All study participants were required to download and install the
EMA digital phenotype data collection app Big4+, developed
by the Department of Psychiatry, Yongin Severance Hospital,
and Digital Medic, on their smartphones before the study began.
Throughout the 6-week study period, the Big4+ app
continuously collected digital phenotype data, such as distance
traveled, step count, and sleep duration, while administering
daily EMA surveys that assessed participants’ mental health
(mood, appetite, sleep, and overall condition). Participants could
monitor the collected data directly through the app. Active EMA
measures involved daily responses to 4 mental health–related
questions concerning mood, appetite, sleep duration, and sleep
quality via the Big4+ app. Each response was collected using
a 7-point Likert scale and required approximately 2 minutes to
complete. Examples of questions include “How was your
mood?” and “Total hours slept last night.” To facilitate
engagement, app push notifications reminded users to complete

J Med Internet Res 2025 | vol. 27 | e69320 | p. 3https://www.jmir.org/2025/1/e69320
(page number not for citation purposes)

Ahn et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


their daily EMA surveys. In parallel, passive EMA data were
gathered through the app, which leverages digital phenotyping
data from previous research [30]. Data collection commenced
once participants provided consent and began using the app,
capturing location data every 5 minutes to measure travel

distances. This passive data acquisition included metrics such
as step count, activity recognition, and sleep data. All the
collected data were encrypted and securely stored in a server
database. A comprehensive summary of the detailed digital
phenotypes is presented in Textbox 1.

Textbox 1. Description of the digital phenotypes.

Digital phenotype and description

• Step count average: the average number of steps taken over a 5-minute interval

• Distance traveled (m): the average distance traveled over a 5-minute interval (m)

• Location count: the number of unique locations visited per day

• Total distance moved: the total distance traveled per day (km)

• Pattern deviation (criteria): the percentage of times a daily routine deviates by >100 m from the established pattern

• Time spent at most frequented location (home): The total time spent (minutes) at the location where the participant spent most of their time during
the day

Statistical Analysis
To explore the factors related to PSU among university students
before and after examinations, the participants with K-SAPS
scores ≥40 were classified as the PSU group, while those with
scores <40 were classified as the non-PSU group. Age-, gender-,
and wave-matched participants without PSU were selected,
resulting in a total of 112 participants, including 64 (57.1%)
men and 48 (42.9%) women. Independent samples t tests
(2-tailed) were used for numerical variables, and chi-square
tests were used for categorical variables. Continuous variables
were reported as mean SD, and categorical variables were
reported as n (%).

To identify predictors of PSU, backward multivariable logistic
regression analysis was conducted. PSU was the dependent
variable, and significant variables in univariate analyses (P<.05)
were the independent variables. Binary variables were created
for each participant to indicate whether their scores on the
PHQ-9, GAD-7, SIAS, DASS stress, GSDS, K-SAPS, and
AUDIT met or exceeded standardized cutoff values, categorizing
participants as “at risk” or “not at risk.” Cutoff values were set
at ≥9 for PHQ-9; ≥5 for GAD-7; ≥34 for SIAS; ≥15 for DASS
stress; ≥33 for GSDS; and ≥10 and ≥6 for AUDIT for men and
women, respectively. In addition, EMA variables were
categorized using median split, resulting in “above median”
and “below median” groups.

A 2 (group)×2 (time) repeated measures ANOVA was
performed to examine the between-group effect (PSU vs
non-PSU), within-group effect (pre- and postexamination), and
time×group interaction effect. Paired t tests compared pre- and
postexamination scores within groups, and independent t tests
assessed group differences at both time points, applying the
Bonferroni correction (P<.025). All analyses were conducted

using SPSS (version 27.0; IBM Corp) for Windows, with a
significance of P<.05.

Ethical Considerations
This study is part of a collaborative project between the
Department of Psychiatry at Yonsei University and the
Department of Biomedical Engineering at Ulsan National
Institute of Science and Technology. It was approved by the
Ulsan National Institute of Science and Technology Institutional
Review Board (UNISTIRB-23-040-A), and it adhered to the
principles of the Declaration of Helsinki. All participants were
informed about the study’s aims, methods, and data collection
procedures and provided their written informed consent before
participation. All collected data were anonymized to ensure
participant privacy. Participants who completed the 6-week
study were compensated with KRW 80,000 (approximately US
$60) for their time and effort.

Results

Participants’ Demographic Information
A total of 243 students participated in the study, comprising
124 (51%) men and 119 (49%) women aged between 18 and
28 (mean 21.9, SD 1.9) years. The prevalence of PSU was 23%
(56/243), with 31 (55%) participants with at-risk level of use
(scores ≥40 and <43) and 25 (45%) participants with high-risk
level of use (scores ≥43). Out of 243 participants, 56 participants
with PSU were identified. To ensure comparability, a matched
sample of 56 non-PSU participants was selected based on age,
gender, and wave of data collection, resulting in a total matched
sample size of 112 participants. This matched sample was used
for detailed analyses in the study. Additional demographic
characteristics are provided in Table 1.
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Table 1. Descriptive characteristics of the study population.

Study sample (n=112; 1:1 age, gender, and wave matched)aTotal participants (N=243)

112 (46.1)243 (100)Sample (N=243), n (%)

21.7 (1.8)21.9 (1.9)Age (y), mean (SD)

Gender, n (%)

48 (42.9)124 (51)Man

64 (57.1)119 (49)Woman

Wave, n (%)

68 (60.7)135 (55.1)Midterm

44 (39.3)108 (44.1)Final

aThe study sample consists of 56 participants with problematic smartphone use (PSU) and 56 non-PSU participants matched 1:1 based on age, gender,
and wave of data collection. Matching was conducted to ensure comparability between the groups.

Comparison Between the PSU and Non-PSU Groups
at Baseline
The analysis revealed significant differences between the PSU
and non-PSU groups in several measures: K-SAPS scores (mean
23.70, SD 5.18 vs mean 44.25, SD 4.22; P<.001), PHQ-9 (mean
3.59, SD 4.37 vs mean 6.39, SD 5.51; P=.004), GAD-7 (mean
2.18, SD 3.07 vs mean 5.05, SD 5.03; P<.001), SIAS (mean
23.21, SD 71.15 vs mean 37.16, SD 17.06; P<.001), DASS
stress (mean 5.7, SD 8.5 vs mean 11.3, SD 12.2; P=.006), GSDS

(mean 38.75, SD 17.74 vs mean 48.59, SD 17.27; P=.004), and
AUDIT (mean 4.91, SD 3.60 vs mean 6.98, SD 4.04; P=.005),
with the PSU group scoring significantly higher in these
assessments. In addition, marginally significant differences
were observed in the average distance traveled over a 5-minute
interval (mean 157.79, SD 119.24 vs mean 221.87, SD 199.50;
P=.046). However, daily mood, appetite, sleep, and overall
emotional state scores derived from EMA surveys were lower
in the PSU group than those in the non-PSU group, although
these differences were not significant (Table 2).
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Table 2. Comparison of means of the characteristics between the PSUa and non-PSU groups at baseline.

P valuet value (df)Non-PSU, mean (SD)PSU, mean (SD)Variables

Psychosocial measures (PSU, n=56; non-PSU, n=56)

<.00123.0 (110)23.7 (5.2)44.3 (4.2)Korean Smartphone Addiction Proneness Scale

.0043.0 (110)3.6 (4.4)6.4 (5.5)Patient Health Questionnaire-9

<.0013.7 (110)2.2 (3.1)5.1 (5.0)Generalized Anxiety Disorder-7

<.0014.3 (110)23.2 (17.2)37.2 (17.1)Social Interaction Anxiety Scale

.0062.8 (110)5.7 (8.5)11.3 (12.2)Depression Anxiety Stress Scales stress

.0043.0 (110)38.8 (17.7)48.6 (17.3)General Sleep Disturbance Scale

.0052.9 (110)3.6 (4.9)7.0 (4.0)Alcohol Use Disorders Identification Test

Passive EMAb (digital phenotype; PSU, n=52; non-PSU, n=54)

.42–0.8 (106)88.2 (47.3)80.7 (47.2)Step count average

.0462.0 (106)119.2 (157.8)221.9 (199.5)Distance traveled (m)

.540.6 (106)2.6 (0.7)2.7 (0.6)Location count

.53–0.6 (106)57.9 (136.8)45.8 (34.3)Total distance moved

.321.0 (106)67.2 (27.0)72.3 (24.9)Pattern deviation (criteria)

.37–0.9 (106)935.5 (263.1)892.5 (230.9)Time spent at home

Active EMA (PSU, n=52; non-PSU, n=54)

.13–1.5 (106)5.3 (1.3)5.0 (1.1)Mood

.16–1.4 (106)5.3 (1.2)5.0 (1.1)Appetite

.32–1.0 (106)4.9 (1.2)4.7 (1.0)Sleep quality

.20–1.3 (106)5.2 (1.2)4.9 (1.0)Overall emotional state

.121.6 (106)412.9 (61.1)430.3 (51.0)Sleep duration

aPSU: problematic smartphone use.
bEMA: ecological momentary assessment.

Factors Associated With PSU in the Univariate
Analysis
Univariate analysis revealed significant associations between
PSU and multiple psychosocial measures (PHQ-9, GAD-7,
SIAS, and DASS stress: all P<.01; GSDS: P=.02), with no
significant difference for AUDIT (P=.08). Notably, the PSU

group had higher rates of exceeding cutoff scores across the
PHQ-9, GAD-7, SIAS, and GSDS. In relation to the digital
phenotypes, a significant association was found only for the
average distance traveled over a 5-minute interval (P=.02).
Furthermore, in the active EMA data, only appetite was
significantly associated with PSU (Table 3).
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Table 3. Univariate analysis of the sample characteristics.

P valueχ2 test (df)Non-PSU, n (%)PSUa, n (%)Variables

Psychosocial measures (PSU, n=56; non-PSU, n=56)

<.00113.2 (1)Patient Health Questionnaire-9 (cutoff scores: 9)

53 (95)38 (68)Not at risk

3 (5)18 (32)At risk

.00111.7 (1)Generalized Anxiety Disorder-7 (cutoff scores: 5)

49 (88)33 (59)Not at risk

7 (13)23 (41)At risk

<.00114.8 (1)Social Interaction Anxiety Scale (cutoff scores: 34)

43 (77)23 (41)Not at risk

13 (23)33 (59)At risk

.0096.9 (1)Depression Anxiety Stress Scales stress (cutoff scores: 15)

48 (86)36 (64)Not at risk

8 (14)20 (36)At risk

.025.2 (1)General Sleep Disturbance Scale (cutoff scores: 33)

22 (39)11 (20)Not at risk

34 (61)45 (80)At risk

.083.0 (1)Alcohol Use Disorders Identification Test (cutoff scores: male=10, female=6)

38 (68)29 (52)Not at risk

18 (32)27 (48)At risk

Passive EMAb (digital phenotype; PSU, n=52; non-PSU, n=54)

.700.15 (1)Step count average

28 (52)25 (48)Above median

26 (48)27 (52)Below median

.025.44 (1)Distance traveled (m)

21 (39)32 (62)Above median

33 (61)20 (39)Below median

.440.6 (1)Location count

25 (46)28 (54)Above median

29 (54)24 (46)Below median

.241.36 (1)Total distance moved

24 (44)29 (56)Above median

30 (56)23 (44)Below median

.241.36 (1)Pattern deviation (criteria)

24 (44)29 (56)Above median

30 (56)23 (44)Below median

.241.36 (1)Time spent at home

30 (56)23 (44)Above median

24 (44)29 (56)Below median

Active EMA (PSU, n=52; non-PSU, n=54)

.053.8 (1)Mood

32 (59)21 (40)Above median
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P valueχ2 test (df)Non-PSU, n (%)PSUa, n (%)Variables

22 (41)31 (60)Below median

.025.4 (1)Appetite

34 (63)21 (40)Above median

20 (37)31 (60)Below median

.440.6 (1)Sleep quality

29 (54)24 (46)Above median

25 (46)28 (54)Below median

.053.8 (1)Overall emotional state

32 (59)21 (40)Above median

22 (41)31 (60)Below median

.241.4 (1)Sleep duration

24 (44)29 (56)Above median

30 (56)23 (44)Below median

aPSU: problematic smartphone use.
bEMA: ecological momentary assessment.

Independent Predictors of PSU in Multivariable
Logistic Regression
Table 4 summarizes the results of the multivariable logistic
regression analysis exploring factors associated with PSU based
on K-SAPS scores. This analysis included psychosocial
measures and digital phenotype data from passive and active
EMA, using baseline data collected 3 weeks before the
examination. The final model (R²=0.424) identified several
independent predictors of PSU: PHQ-9 score above the cutoff
(B=2.138; odds ratio [OR] 8.480, 95% CI 1.950-36.872), SIAS

score above the cutoff (B=1.481; OR 4.398, 95% CI
1.592-12.148), GSDS score above the cutoff (B=1.234; OR
3.436, 95% CI 1.146-10.298), time spent at home below the
median (B=–1.066; OR 3.436, 95% CI 1.146-10.298), and sleep
duration above the median (B=1.134; OR 3.436, 95% CI
1.146-10.298). The variable “mean distance traveled per
5-minute interval” was not significant (P>.05) but was retained
in the model. Higher levels of depressive symptoms, SIA, and
lower sleep quality, along with less time spent at home, were
associated with an increased risk of PSU before the examination.

Table 4. Multivariable logistic regression analysis of the effect of the factors on problematic smartphone use.

ORa (95% CI)P valueWaldB (SE)

8.48 (1.95-36.87).0048.132.14 (0.75)Patient Health Questionnaire-9

4.40 (1.59-12.15).0048.161.48 (0.52)Social Interaction Anxiety Scale

3.44 (1.15-10.30).034.861.23 (0.56)General Sleep Disturbance Scale

2.328 (0.87-5.93).092.830.82 (0.49)Mean distance traveled per 5-minute interval

0.35 (0.13-0.94).044.33–1.07 (0.51)Time spent at home

3.11 (1.14-8.48).034.901.13 (0.51)Sleep duration

0.10b.00111.91–2.33 (0.67)Constant

aOR: odds ratio.
bCI not applicable.

Comparison of Pre- and Postexamination Psychosocial
Measures and EMA Data Between PSU and Non-PSU
Groups
Repeated measures ANOVA compared changes in smartphone
addiction proneness, depression, SIA, sleep disturbance, time
spent at home, and sleep duration between the PSU and non-PSU
groups before and after the examination. The results revealed
a significant group×time interaction effect for smartphone

addiction proneness (F1, 110=370.29; P<.001;  p²=0.771),
indicating differing patterns of change (Table 5). Specifically,
the PSU group exhibited a decrease in average smartphone
addiction scores from 44.25 (SD 4.22) to 41.52 (SD 6.72), while
the non-PSU group showed an increase from 23.70 (SD 5.18)
to 25.13 (SD 6.58). In addition, significant differences were
found in depression and SIA. Depression scores in the PSU
group decreased from 6.39 (SD 5.51) to 4.48 (SD 5.19), and
SIA scores decreased significantly from 37.16 (SD 17.06) to
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33.71 (SD 18.52). In contrast, depression scores in the non-PSU
group significantly decreased from 3.59 (SD 4.37) to 2.55 (SD
3.13), with no substantial change in SIA scores (Table 6).
Furthermore, a repeated measures ANOVA revealed significant
changes in sleep disturbance, sleep duration, and time spent at
home in both groups before and after the examination. A
significant main effect of time for sleep disturbance (F1,110=5.13;
P=.02) and a significant group effect (F1,110=10.94; P=.001)
were observed. However, the group×time interaction was not
significant (F1,110=.062; P=.80; Table 5). Specifically, sleep
disturbance or time spent at home did not differ significantly
(both P values >.05); although sleep duration changed

significantly (P=.03), it was not significant after applying the
Bonferroni correction. In the non-PSU group, while sleep
disturbance did not differ significantly (P=.07), time spent at
home did (P=.03), although this was also nonsignificant after
correction. However, a significant difference in sleep duration
was observed (P=.01) (Table 6). Overall, while significant main
effects of time were observed for sleep disturbance, time spent
at home, and sleep duration (Table 5), paired t test results
revealed no significant pre- to postexamination differences in
sleep disturbance or time spent at home for the groups. However,
only the non-PSU group demonstrated a significant increase in
sleep duration after the examination, with no change observed
in the PSU group (Figure 2; Table 6).

Table 5. Group, time, and interaction effects on study variables: repeated measures ANOVA results.

Group×time interactionTimeGroupVariables

P value p2F test (df)P value p2F test (df)P value p2F test (df)

<.0010.12916.24 (1, 110).210.0141.59 (1, 110)<.0010.771370.29 (1, 110)K-SAPSa

.200.0151.67 (1, 110)<.0010.14718.98 (1, 110).0040.0728.55 (1, 110)PHQ-9b

.040.044.58 (1, 110).0490.0353.96 (1, 110)<.0010.11914.79 (1, 110)SIASc

.800.0010.06 (1, 110).020.0455.13 (1, 110).0010.09010.94 (1, 110)GSDSd

.480.0050.51 (1, 101).0080.0677.27 (1, 101).200.0161.67 (1, 101)Time spent at home

.240.0141.40 (1, 101)<.0010.14817.59 (1, 101).100.0262.71 (1, 101)Sleep duration

aK-SAPS: Korean Smartphone Addiction Proneness Scale.
bPHQ-9: Patient Health Questionnaire-9.
cSIAS: Social Interaction Anxiety Scale.
dGSDS: General Sleep Disturbance Scale.
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Table 6. Mean differences between pre-examination (baseline) and postexamination evaluations for both groups.

P valuebCohen dt test (df)Diff (95% CI)aPostexamination, mean
(SD)

Pre-examination, mean
(SD)

Group and variables

PSUc

.0010.4793.58 (55)2.73 (1.20 to 4.26)41.52 (6.72)44.25 (4.22)K-SAPSd

.0010.4663.48 (55)1.91 (0.81 to 3.01)4.48 (5.19)6.39 (5.51)PHQ-9e

.010.3582.68 (55)3.45 (0.87 to 6.02)33.71 (18.52)37.16 (17.06)SIASf

.170.1851.39 (55)2.75 (–1.22 to 6.72)45.84 (18.33)48.59 (17.27)GSDSg

.14–0.208–1.48 (50)–46.22 (–108.81 to
16.38)

941.86 (262.94)892.52 (230.93)Time spent at
home

.03–0.308–2.20 (50)–15.85 (–30.30 to
–1.40)

449.40 (54.45)430.29 (51.03)Sleep duration

Non-PSU

.045–0.274–2.05 (55)–1.43 (–2.82 to –0.03)25.13 (6.58)23.7 (5.18)K-SAPS

.010.352.62 (55)1.04 (0.24 to 1.82)2.55 (3.13)3.59 (4.37)PHQ-9

.91–0.016–0.12 (55)–0.13 (–2.26 to 2.01)23.34 (16.42)23.21 (17.15)SIAS

.070.2451.83 (55)3.43 (–0.33 to 7.18)35.32 (17.88)38.75 (17.74)GSDS

.03–0.319–2.30 (51)–79.63 (–149.21 to
–10.04)

1019.91 (307.08)935.51 (263.07)Time spent at
home

.001–0.511–3.69 (51)–28.32 (–43.73 to
–12.90)

441.11 (44.43)412.89 (61.13)Sleep duration

aDifference represents the difference between the pre-examination and postexamination mean values (pre-examination – postexamination).
bSignificance set at P<.025 (after Bonferroni correction).
cPSU: problematic smartphone use.
dK-SAPS: Korean Smartphone Addiction Proneness Scale.
ePHQ-9: Patient Health Questionnaire-9.
fSIAS: Social Interaction Anxiety Scale.
gGSDS: General Sleep Disturbance Scale.
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Figure 2. Comparative analysis of pre- and postexamination, psychological and behavioral changes in problematic smartphone use (PSU) and non-PSU
groups: (A) PSU (K-SAPS), (B) depression (PHQ-9), (C) social interaction anxiety (SIAS), (D) sleep disturbance (GSDS), (E) time spent at home, and
(F) sleep duration. GSDS: General Sleep Disturbance Scale; K-SAPS: the Korean Smartphone Addiction Proneness Scale; PHQ-9: Patient Health
Questionnaire-9; SIAS: Social Interaction Anxiety Scale.

Discussion

Principal Findings
This study identified significant associations between PSU and
both questionnaire-based demographic and psychosocial
measures as well as daily EMA that were either actively or
passively collected from a large sample of university students
in South Korea. Independent predictors of PSU from
psychosocial assessments at baseline included depression, SIA,
and sleep disturbance. Conversely, data collected using
app-based EMA from baseline to 2 weeks leading up to 1 week
before the examination highlighted less time spent at home and
longer sleep duration as significant predictors. These findings
provide valuable insights into individual daily patterns through
real-time, naturalistic measures.

Comparison With Prior Work
The prevalence of PSU in this study was 23% (56/243),
comparable to the 21.7% prevalence reported among Serbian
medical students [14] but slightly higher than the prevalence
reported among Korean university students [1,53,54]. However,
it was lower than the 39.7% prevalence reported by Liu et al
[6] regarding smartphone addiction in China. The prevalence
of smartphone addiction may vary due to several factors,
including differences in measurement scales (eg, cutoff values),
sociocultural background, educational environment, sample
size, distribution, and technological advancements. Rapid
technological progression has likely led individuals to become
increasingly accustomed to smartphone use, potentially

contributing to the higher prevalence observed in recent
research.

Comparison of psychosocial characteristics revealed that the
PSU group exhibited significantly higher levels of negative
emotions, including depression, anxiety, and stress, as well as
more severe sleep disturbances than the non-PSU group. These
results suggest a correlation between higher PSU and increased
psychological distress and disrupted sleep, consistent with prior
findings linking PSU to emotional dysregulation and reduced
sleep quality [8,17,55-57]. A significant association was found
between PSU and clinical risks for adverse mental health, with
a larger proportion of the PSU group classified as being “at
risk” for depression, anxiety, stress, and general sleep
disturbances compared to the non-PSU group. This suggests a
greater likelihood for individuals with PSU to meet clinical
thresholds for psychological distress. These findings align with
those of a study involving Turkish college students [17], which
similarly reported significant associations between smartphone
use and elevated depression, anxiety, and poor sleep quality. In
addition, recent studies provide evidence of consistent links
between smartphone use and psychological factors such as
stress, anxiety, and depression [58-61]. Our study reinforces
these findings, demonstrating significant associations between
PSU and increased risks of depression, anxiety, stress, and sleep
disturbances.

Analyzing app-based daily active and passive EMA, this study
found distinct GPS-derived movement patterns in individuals
with PSU compared to those without it. The digital phenotype
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data of the PSU group revealed distinct movement patterns,
including greater average distances traveled over 5-minute
intervals, spending less time at home, and more frequent
deviations from their habitual routes, with some movements
exceeding 100 m. These patterns, including deviations >100 m
from regular paths, may suggest behavioral tendencies such as
impulsivity, emotional avoidance, or a heightened pursuit of
immediate rewards. Similarly, although the PSU group traveled
shorter total distances compared to the non-PSU group (PSU:
mean 45.8, SD 34.3 km vs non-PSU: mean 57.9, SD 136.8 km),
participants traveled significantly greater distances within
5-minute intervals (PSU: mean 221.9, SD 199.5 m vs non-PSU:
mean 119.2, SD 157.8 m). This suggests that while the PSU
group covered less ground overall, their movement patterns,
characterized by traveling further in shorter periods, may reflect
higher impulsivity. The contrast highlights the complex
relationship between PSU and impulsive behavior, suggesting
that those with PSU may exhibit more erratic movement
patterns. These findings align with those of previous studies
that link impulsivity to smartphone overuse and related
movement behaviors. For example, Pérez de Albéniz Garrote
et al [62] found that individuals with high impulsivity often
seek novelty and have increased smartphone engagement. Schulz
van Endert and Mohr [63] suggested that GPS-tracked
movement data can offer objective insights into
impulsivity-related smartphone use. Although these studies did
not focus explicitly on GPS data, they support our observation
[62,63].

The study identified independent significant predictors of PSU
in college students before examinations, including psychosocial
factors such as elevated levels of depression, SIA, and sleep
disturbances. The digital phenotype features extracted from
passive EMA revealed that a longer average “distance traveled”
(mean distance covered per 5-min interval, measured in meters)
and less “time spent at home” (total daily duration at the primary
location, measured in minutes) were distinguishing
characteristics for students with PSU. In addition, longer sleep
duration was an independent predictor in the PSU group.
Together, these findings suggest that students with PSU exhibit
distinct mobility and sleep patterns before examinations,
potentially indicative of broader behavioral tendencies
associated with smartphone overuse. Studies on impulsivity and
movement patterns [64,65] have shown that individuals with
high impulsivity tend to exhibit irregular movement patterns
and greater range in travel, supporting the notion that impulsive
behaviors may be tied to broader, real-world activity patterns.
This could reflect their use of erratic behaviors as a coping
mechanism for stress or emotional avoidance.

Specifically, after the examination, smartphone addiction
proneness, SIA, and depression were significantly reduced in
the PSU group, suggesting that pre-examination PSU may serve
as an avoidance coping strategy for academic stress. These
results indicate that academic stress can exacerbate mental health
vulnerabilities, leading to PSU or worsening existing addiction.
Deteriorating mental health is one of the primary risks for
smartphone addiction, with addictive behaviors to manage stress
and alleviate negative emotions. PSU students may use
smartphones to reduce stress and improve mood, increasing the

risk of addiction. This finding aligns with previous findings on
stress-related digital dependence behaviors. For example, Choi
[66] suggests that stress influences smartphone addiction through
self-regulation. Moreover, this result is consistent with
Kardefelt-Winther’s [67] compensatory internet use model,
which proposes that smartphones can help individuals disengage
from stress-inducing social situations, with the need for such
behavior diminishing as academic pressures ease. These findings
are consistent with those of previous studies [68], showing that
as stress decreases, smartphone dependence for emotional
regulation may also decline. In contrast, the non-PSU group
showed a significant increase in sleep duration after
examinations, reflecting distinct adaptation mechanisms between
the 2 groups.

Another key finding of this study is that SIA was a strong
independent predictor of PSU in the students. Unlike general
anxiety, SIA is particularly linked to maladaptive smartphone
behaviors, potentially due to mechanisms unique to social
anxiety that intensify under academic pressures. The heightened
vulnerability of students with PSU seems to be compensated
for by the portability and flexibility of smartphone apps, which
allow individuals to supplement deficiencies in real-life social
interactions [6]. These results suggest that high levels of SIA
may negatively impact the mental well-being and behavior of
students, emphasizing the need for targeted interventions that
specifically address SIA. Addressing SIA during examination
preparation may be particularly beneficial in supporting the
mental health and academic success of students. This finding
aligns with reports by Beidel and Turner [69] and Wong et al
[70], highlighting the impact of social anxiety on behavioral
and academic outcomes, further validating the importance of
addressing social interaction challenges within educational
settings [69-72].

The findings from this study highlight distinct shifts in
smartphone addiction proneness and psychosocial factors
between the PSU and non-PSU groups, especially around
examination periods. This work demonstrates how varying
psychosocial vulnerabilities and coping mechanisms shape
smartphone use patterns, with those having PSU exhibiting
higher susceptibility to stress and a tendency to rely on
smartphones for emotional regulation. Our results emphasize
the impact of PSU on mental health and behaviors, linking it to
changes in SIA and depression as well as to physical mobility
and sleep. These findings are consistent with previous research
[67], suggesting that individuals may use digital devices as
coping mechanisms for emotional stress. Moreover, the effects
of PSU reach beyond digital habits, influencing real-life
routines, as shown by studies on movement patterns [64,65].
In conclusion, this study supports the need for interventions
focused on reducing SIA and fostering healthy coping strategies
among students, aiming to improve both their mental well-being
and academic outcomes. Future research should examine the
complex interaction between digital behaviors and real-world
outcomes, paving the way for a comprehensive understanding
of the broader impact of PSU.
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Limitations
This study has several limitations. The generalizability of this
study is limited, as the sample comprised students from a single
4-year undergraduate university in Ulsan, South Korea.
Consequently, these findings should be applied to different
geographical areas or cultural contexts with caution. The
sample’s unique characteristics, particularly the fact that all
students resided in dormitories, are likely to have resulted in
restricted movement patterns, with most mobility occurring
within the campus or its immediate vicinity. As all students
shared the same institutional environment, they were subject to
a uniform set of norms and rules that regulate and constrain
behavior, including mobility patterns. This homogeneity extends
beyond sociodemographic characteristics to encompass
behavioral consistency [73,74], particularly during examination
periods. During these high-stress academic periods, shared
examination schedules, the necessity of efficient time
management, and social pressures to engage in study routines
further amplified similarities in daily patterns. Consequently,
the findings should also be interpreted within the unique context
of academic stress in this demographic, as examination-related
pressure is known to influence mobility behaviors and
psychosocial factors. While this homogeneity provides
methodological advantages, such as reduced variability and
enhanced internal validity, it limits the study’s applicability to
more diverse populations [73]. To address this limitation, future
research should incorporate diverse geographic, educational,
and cultural samples to strengthen the external validity of these
findings. Including participants from various universities,
regions, and cultural contexts would allow for a more
comprehensive assessment of the broader applicability of the
results. Expanding the sample to include nonstudent populations
or community-based cohorts would also help determine whether
the observed relationships are unique to undergraduate students
or generalizable to individuals with more varied daily routines
and environmental constraints.

This study used both active and passive EMA to capture
real-time data and digital phenotypes, focusing primarily on
GPS-based movement patterns. However, it did not include
objective smartphone use metrics, such as screen time or app
use patterns. Previous research underscores the critical role of
passive smartphone sensing in identifying impulsive behaviors
and self-regulation deficits, which often underlie excessive
smartphone use [55,75-79]. For instance, hallmark features of
PSU, such as compulsive checking and loss of control over
smartphone use, can be quantified through objective metrics,
providing clearer insights into behavioral manifestations [76,77].
Wen et al [76] presented preliminary evidence linking
impulsivity traits to mobile device use. Passive measures,
including call logs, battery consumption, and screen time, were
found to predict various aspects of impulsivity and impulsive
behaviors in nonclinical populations. These findings highlight
the importance of integrating diverse passive smartphone metrics
into PSU research. Despite the growing body of evidence
supporting the utility of passive sensing methods, our study
encountered technical challenges in fully using these data
sources. Although we successfully extracted passive smartphone
metrics, such as app use and screen time, discrepancies in data

accessibility between Android and iOS devices limited their
integration. For instance, detailed app-level metrics, such as
background use and screen time, were available on Android
devices but not on iOS devices, which only provided generalized
metrics, such as screen-on and screen-off duration. This
platform-specific limitation prevented the harmonization of
these data streams, ultimately leading to their exclusion from
the final dataset. Addressing such technical barriers, including
enhancing the cross-platform generalizability of mobile sensing
models, is crucial for future research [76]. Overcoming these
limitations would enable researchers to integrate diverse data
streams, reduce reliance on self-reports, and provide a more
accurate and nuanced assessment of PSU.

The results of this study identify significant independent
predictors of PSU, including depression, SIA, and sleep
disturbance, through regression analysis. While these findings
suggest robust associations after adjusting for potential
confounders, they are correlational and should not be interpreted
as causal. The cross-sectional nature of the baseline psychosocial
assessments limits our ability to infer temporal or causal
relationships. Future studies using longitudinal or experimental
designs will be necessary to establish causality and to explore
the underlying mechanisms of these associations. While this
study revealed significant differences in GPS-derived movement
patterns between the PSU and non-PSU groups, interpreting
these patterns as primarily driven by impulsivity or emotional
avoidance remains speculative. Several alternative explanations
warrant consideration. First, these movement patterns may
reflect stress-related coping strategies, wherein individuals
engage in physical displacement to manage heightened stress
or anxiety during examination periods. Previous research has
demonstrated that traveling longer distances is associated with
lower levels of stress, greater positive affect, and reduced
anxiety. On a daily basis, participants traveling longer distances
reported lower levels of stress and anxiety and more positive
emotions, while higher levels of routine activity were linked to
lower rates of depression and loneliness [80,81]. These findings
align with the results of our study. In this study, the non-PSU
group traveled significantly longer total daily distances
compared with the PSU group; reported significantly lower
levels of depression, anxiety, and stress; and exhibited
significantly lower rates of routine deviations. The PSU group
exhibited shorter total daily distances traveled, but when
averaged over 5-minute intervals, participants covered greater
distances. This pattern indicates that the PSU group tended to
travel farther within shorter periods, suggesting that such
increased high-density (short-time long-distance) travel or
movement may act as a behavioral response to stress, providing
temporary relief or distraction. Second, environmental or
lifestyle factors may also contribute to these patterns. Variations
in daily schedules, modes of transportation, and academic
routines could influence mobility behaviors. For example,
students commuting by car or bike may exhibit different
movement patterns than those traveling on foot. Similarly,
evening activities such as part-time jobs or social gatherings
could explain deviations from habitual routes [81]. Third,
personal traits, such as conscientiousness or agreeableness, may
influence these behaviors. Previous studies have shown that
highly agreeable individuals tend to engage in more social
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interactions and visit a greater variety of locations, whereas
those with high conscientiousness often follow structured
routines and visit fewer places. These traits may interact with
PSU, affecting both mobility and smartphone use behaviors
[80]. To further investigate the underlying mechanisms, future
studies should incorporate additional behavioral and
psychological measures, such as momentary assessments of
stress, anxiety, and smartphone use during movement episodes.
Integrating these data with GPS metrics could help clarify the
roles of impulsivity, emotional avoidance, and other
psychological factors in driving these patterns. While this study
primarily focused on behavioral patterns, it did not directly
assess personal traits such as impulsivity or coping mechanisms,
which could provide deeper insight into the psychological
factors influencing PSU and mobility. Future research should
incorporate validated scales for impulsivity and coping styles,
alongside EMA, to better understand how students manage
stress and emotional challenges through smartphone use.

Conclusions
Despite these limitations, the contributions of this study to
understanding the relationship between smartphone use and
mental health during academic examination periods are
significant. First, it was identified that a significantly higher
proportion of students with PSU have high risk for depression,
anxiety, stress, and sleep disturbances. This underscores the
heightened vulnerability of students with PSU under
examination-related stress. In addition, this study is among the
first to combine active and passive EMA over a 2-week,
pre-examination period to capture real-time data on students’

mobility and digital phenotypes. This innovative approach
enabled a detailed comparison of movement patterns and
behaviors between PSU and non-PSU groups, revealing new
insights into how PSU may present in daily life, particularly
during high-stress periods. Finally, by including both pre- and
postexamination data, this study observed fluctuations in
behavioral patterns and mental health outcomes over time,
offering a dynamic perspective on the interactions between
smartphone use and mental health during critical academic
events. These findings align with the concerns raised in the
background regarding the negative consequences of PSU.
Specifically, this study demonstrated that PSU is associated
with heightened risks of depression, anxiety, and stress as well
as disrupted sleep patterns, which often exacerbate each other
during high-stress periods such as examinations, leading to a
compounded negative impact on overall well-being. These
results support existing evidence linking PSU to emotional
dysregulation, reduced sleep quality, and increased
psychological distress. Moreover, the significant associations
observed between PSU and clinical risks highlight the
importance of addressing these vulnerabilities, particularly
during high-stress periods such as examinations. By
contextualizing PSU as both a symptom and a contributor to
psychological distress, this study emphasizes the need for
targeted interventions aimed at mitigating the broader impacts
of PSU on students’ mental health and academic performance.
Together, these findings represent a meaningful step forward
in understanding the real-world implications of PSU in students
under academic pressure, providing a foundation for future
research in this area.
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