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Abstract

Background: Timely and accurate prediction of short-term mortality is critical in intensive care units (ICUs), where patients’
conditions change rapidly. Traditional scoring systems, such as the Simplified Acute Physiology Score and Acute Physiology
and Chronic Health Evaluation, rely on static variables collected within the first 24 hours of admission and do not account for
continuously evolving clinical states. These systems lack real-time adaptability, interpretability, and generalizability. With the
increasing availability of high-frequency electronic medical record (EMR) data, machine learning (ML) approaches have emerged
as powerful tools to model complex temporal patterns and support dynamic clinical decision-making. However, existing models
are often limited by their inability to handle irregular sampling and missing values, and many lack rigorous external validation
across institutions.

Objective: We aimed to develop a real-time, interpretable risk prediction model that continuously assesses ICU patient mortality
using irregular, longitudinal EMR data, with improved performance and generalizability over traditional static scoring systems.

Methods: A time-aware bidirectional attention-based long short-term memory (TBAL) model was developed using EMR data
from the MIMIC-IV (Medical Information Mart for Intensive Care) and eICU Collaborative Research Database (eICU-CRD)
databases, comprising 176,344 ICU stays. The model incorporated dynamic variables, including vital signs, laboratory results,
and medication data, updated hourly, to perform static and continuous mortality risk assessments. External cross-validation and
subgroup sensitivity analyses were conducted to evaluate robustness and fairness. Model performance was assessed using the
area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), accuracy, and
F1-score. Interpretability was enhanced using integrated gradients to identify key predictors.

Results: For the static 12-hour to 1-day mortality prediction task, the TBAL model achieved AUROCs of 95.9 (95% CI 94.2-97.5)
and 93.3 (95% CI 91.5-95.3) and AUPRCs of 48.5 and 21.6 in MIMIC-IV and eICU-CRD, respectively. Accuracy and F1-scores
reached 94.1 and 46.7 in MIMIC-IV and 92.2 and 28.1 in eICU-CRD. In dynamic prediction tasks, AUROCs reached 93.6 (95%
CI 93.2-93.9) and 91.9 (95% CI 91.6-92.1), with AUPRCs of 41.3 and 50, respectively. The model maintained high recall for
positive cases (82.6% and 79.1% in MIMIC-IV and eICU-CRD). Cross-database validation yielded AUROCs of 81.3 and 76.1,
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confirming generalizability. Subgroup analysis showed stable performance across age, sex, and severity strata, with top predictors
including lactate, vasopressor use, and Glasgow Coma Scale score.

Conclusions: The TBAL model offers a robust, interpretable, and generalizable solution for dynamic real-time mortality risk
prediction in ICU patients. Its ability to adapt to irregular temporal patterns and to provide hourly updated predictions positions
it as a promising decision-support tool. Future work should validate its utility in prospective clinical trials and investigate its
integration into real-world ICU workflows to enhance patient outcomes.

(J Med Internet Res 2025;27:e69293) doi: 10.2196/69293
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Introduction

The intensive care unit (ICU) is a critical environment where
timely and accurate decisions can significantly impact patient
outcomes. Predicting the risk of adverse events, especially
mortality, is essential for guiding clinical management [1,2].
ICUs provide continuous monitoring, advanced treatment, and
diagnostic technologies. However, ICU clinicians face
overwhelming amounts of patient data stored in electronic
Patient Data Management Systems. It is becoming increasingly
difficult to identify the most important information for care
decisions [3]. The human ability to process such large volumes
of information is limited, leading to risks such as data overload,
inattentional blindness, and task fixation. These factors increase
the likelihood that clinicians may fail to recognize, interpret, or
act on relevant information [4,5]. Traditional prognostic models,
such as the Simplified Acute Physiology Score (SAPS) and the
Acute Physiology and Chronic Health Evaluation (APACHE),
have been widely used to assess disease severity and predict
mortality in ICU patients [6-10]. However, these models have
limitations, including low accuracy, reliance on static data, and
dependence on information from the first day of ICU admission.
They fail to account for the dynamically changing clinical state
of patients during their ICU stay. Additionally, the lack of
personalized prediction tools often forces clinicians to rely on
subjective judgment, which can lead to biased decisions and
missed opportunities for timely intervention [11-13].

Recent advances in machine learning (ML) offer a promising
solution to these challenges [14-16]. ML algorithms can process
large, heterogeneous, high-dimensional datasets, including
structured and unstructured information, to extract insights that
traditional methods often miss [17,18]. Studies have
demonstrated that ML-based models outperform traditional
scoring systems such as SAPS and APACHE in predicting ICU
mortality. Models such as gradient boosting machines,
convolutional neural networks, and long short-term memory
(LSTM) networks have shown significant improvements in
prediction accuracy and the potential for real-time application
in clinical settings [19-21].

Despite these advancements, challenges remain in translating
these models into real-world clinical practice. Many existing
models rely on data from the first 24 hours of ICU admission
and focus on short- to medium-term outcomes [22-24].
However, ICU mortality often peaks within the first 24 hours
and decreases with appropriate management. This highlights
the need for dynamic, real-time prediction models that can

continuously update risk assessments as the patient’s condition
evolves [25,26]. In particular, current ML approaches face
limitations in handling the irregular and longitudinal nature of
electronic medical record (EMR) data. First, many models rely
on manually aggregated features or fixed time-window
summarizations, which may overlook fine-grained temporal
patterns and evolving physiological trajectories. As a result,
critical transitions in patient status may not be adequately
captured [27]. Second, the temporal irregularity of EMR data
often leads to missing values or asynchronous variable
recording. Conventional models usually assume regularly
sampled data and require imputation strategies that may
introduce bias or degrade predictive accuracy. Robust modeling
of both the timing and availability of measurements remains an
open challenge in ICU risk prediction [28]. Furthermore, while
many models perform well in specific cohorts, their
generalizability across diverse clinical settings remains
uncertain. Most models lack external validation and require
further evaluation in multicenter cohorts.

To address these gaps, we propose developing a dynamic,
real-time risk prediction model for ICU patients. This model
will leverage the longitudinal, irregular dynamic data commonly
found in EMRs, such as vital signs, laboratory results, and
continuous medication use [28,29]. Our model is based on a
time-aware bidirectional attention-based long short-term
memory (TBAL) framework designed to use multisource EMR
data to predict the dynamic in-hospital mortality risk of critically
ill patients in real time. By incorporating methods such as
irregular time interval awareness and attention mechanisms, the
model learns dynamic trends and dependencies in longitudinal
data to enhance prediction performance. We also aim to
cross-validate the model using multicenter public datasets to
ensure its generalizability and robustness across different clinical
settings. This study seeks to develop a more accurate, dynamic,
and interpretable deep learning model for ICU mortality
prediction, ultimately supporting clinical decision-making and
improving patient outcomes in critical care environments.

Methods

Data Sources
We used 2 large and well-known public EMR databases: the
MIMIC-IV (Medical Information Mart for Intensive Care)
database [30] and the eICU Collaborative Research Database
(eICU-CRD) [31]. These databases contain critical longitudinal
irregular data for patient care, such as physiological
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measurements, laboratory tests, medications, and fluid outputs.
The MIMIC-IV database includes deidentified records of
patients treated in the ICU or emergency department at the Beth
Israel Deaconess Medical Center in Boston from 2008 to 2019.
We extracted data for 73,181 ICU stays, covering 50,920
patients. Each ICU stay in this database is uniquely identified
by a “stay_id.” The eICU-CRD database contains records of
patients treated in 200 ICU units across the United States
between 2014 and 2015. From this database, we extracted
200,859 ICU stays involving 139,367 patients. Each ICU stay
is uniquely identified by a “patientunitstayid.” We used ICU

stays as the unit of analysis and excluded stays shorter than 12
hours or longer than 30 days. ICU stays of less than 12 hours
often lack enough data to evaluate task performance, especially
in continuous dynamic prediction tasks. Stays exceeding 30
days usually involve overly complex cases. We also excluded
patients younger than 18 or older than 80 years due to their
smaller sample sizes, which could reduce the representativeness
of the results. Finally, we retained 58,323 ICU records from the
MIMIC-IV database and 118,021 ICU records from the
eICU-CRD database. Figure 1 provides a detailed overview of
the sample selection process for both databases.

Figure 1. (A) Sample selection process in the MIMIC-IV database and (B) sample selection process in the eICU-CRD database. eICU-CRD: eICU
Collaborative Research Database; ICU: intensive care unit; MIMIC-IV: Medical Information Mart for Intensive Care IV.

Variable Preprocessing
To standardize clinical concepts across the 2 databases, we used
2 widely recognized resources: eicu-code [32] for eICU-CRD
and mimic-code [33] for MIMIC-IV. These resources were used
to map and unify variables and codes in the 2 databases, creating
consistent clinical definitions and ensuring data comparability
[34].

Our data included patient demographics, medical history,
laboratory test results, vital signs, medication use, urine output,
and mechanical ventilation status. Except for demographics, all
other data were longitudinal and irregular. To model these
irregular time series, we followed the approach of the recently
proposed Electronic Medical Record Longitudinal Irregular
Data Preprocessing (EMR-LIP) framework, which is specifically
designed for handling longitudinal, irregular EMR data.
Following the recommendations of EMR-LIP, we consulted
with clinicians and constructed a variable dictionary that defined
the data type, aggregation method, and imputation strategy for
each variable. Detailed variable dictionaries are provided in
Tables S5 and S6 in Multimedia Appendix 1. Of note is that
these aggregation and imputation methods were designed based
on the characteristics of different clinical variables, including
their value types and measurement methods. Therefore, they
are highly aligned with clinical practice. Although some studies
suggest using 0 as a placeholder to allow the model to learn
missing patterns automatically, our approach may offer better
interpretability.

To align the dynamic variables over time, we discretized the
timeline into 1-hour intervals, starting from ICU admission until
discharge. Dynamic variables were resampled to match these
time points. For each variable xd at time point ti, if multiple
observations occurred within the interval [ti–0.5, ti+0.5], we
aggregated them using the method specified in the variable
dictionary, for example, using the median for numerical
variables and the mode for categorical variables. If no
observations were present, the value was marked as missing.
We introduced a mask matrix to track the observation status of
each variable at each time point. For a variable xd at time ti,
mt,d=1 if an observation was available, and mt,d=0 otherwise.
This mask matrix served as a binary indicator of the observation
pattern over time for all dynamic variables. Additionally, to
retain information about the intervals between consecutive
observations after resampling, we computed a time interval
vector δt that captures the time since the last observation for
each variable. The specific calculation method is described in
Multimedia Appendix 1.

During the missing value imputation stage, we applied different
methods based on the type and timing of the missing data, as
defined in the variable dictionary. For example, for variables
missing their first observation, we used the Last Observation
Carried Forward method. If no observations were available
during the entire ICU stay, we used the median (for numerical
variables) or mode (for categorical variables) from the training
set. For other missing values, we used linear interpolation for
numerical variables, and assigned a separate “missing” category
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for categorical variables. If no variables had observations at a
specific time point ti that time point was removed.

Model Development
Our goal was to build a dynamic and continuous risk assessment
model for predicting in-hospital mortality in ICU patients. To
achieve this, we divided the tasks into static prediction tasks
triggered at key time points and dynamic prediction tasks
triggered continuously [15,35]. The key difference between the
2 tasks lies in their prediction time windows. For static tasks,
the prediction time window is fixed, such as the period between
ICU discharge and hospital discharge. In contrast, for dynamic
tasks, the prediction time window is continuously updated, such
as predicting mortality within the next 24 hours at each time
point.

In the static tasks, we set the 12th hour after ICU admission as
the key time point. The tasks included predicting 12-hour to
1-day mortality, 12-hour to 2-day mortality, 12-hour to 4-day
mortality, 12-hour to 7-day mortality, in-hospital mortality after
12 hours, and ICU length of stay greater than 2 days. For
dynamic tasks, we evaluated mortality within the next 24 hours
at each hourly interval.

The baseline model used in this study was an LSTM network,
a recurrent neural network architecture well-suited for
time-series forecasting [36]. LSTM neurons operate through 3
main gates: the input gate, which controls the flow of new data
into the model; the forget gate, which determines whether to
discard irrelevant information; and the output gate, which
regulates the use of updated information for the current
prediction. These mechanisms enable LSTM networks to
effectively learn and retain patterns in sequential data, making
them an ideal choice for processing longitudinal datasets.

To enhance the performance of the baseline LSTM model, we
developed a TBAL network. The TBAL model extends the
capabilities of LSTM by incorporating 2 key features. First, it
uses a bidirectional LSTM structure to capture temporal
dependencies in both forward and backward time directions,
enabling the model to learn more comprehensive temporal
patterns. Second, a time-aware attention mechanism dynamically
assigns weights to data at different time points, prioritizing the
most relevant information for each prediction.

The TBAL model was specifically designed to handle
multivariate time-series data and provide hourly updated
predictions, balancing the need for frequent updates with
manageable model complexity. By integrating newly
accumulated data and learning from evolving temporal trends,
the TBAL model outperformed the baseline LSTM in accuracy
and interpretability. Additional details about the TBAL model
can be found in Multimedia Appendix 1.

We treated each ICU stay as a sample unit, but we grouped the
data by patient to avoid data leakage, as some patients had
multiple ICU stays. We randomly divided the selected samples
from the MIMIC-IV and eICU-CRD databases into training,
testing, and validation sets in a 7:2:1 ratio by patient. The
training set was used for model training, the validation set for
optimal model selection, and the testing set for internal
generalizability testing and external cross-validation.

To test the cross-database generalization ability of the model
between MIMIC-IV and eICU-CRD, we addressed differences
in the variable sets of the 2 databases. We identified 34 common
dynamic variables with consistent definitions between the 2
databases. Separate models were trained on the static and
dynamic tasks within each database. After training, we evaluated
the models on their respective test sets and conducted
cross-testing between the 2 databases.

For hyperparameter settings, grid search was avoided. Instead,
relatively large values were selected, such as an LSTM hidden
size of 512, to ensure sufficient model capacity. L2
regularization and early stopping were applied to prevent
overfitting. Detailed hyperparameter settings are provided in
Table S9 in Multimedia Appendix 1. The TBAL model has
moderate computational requirements and can run on a standard
CPU. The total number of parameters in the TBAL model is
727,640, and the memory or GPU usage during inference is
approximately 2.79 MB. Overall, TBAL is a lightweight
network. On a server with an Intel Xeon Gold 6152 CPU (2.10
GHz, 256 GB RAM; Intel Corporation), the model achieves an
inference speed of 35 forward passes per second. Therefore,
TBAL is fully capable of supporting real-time prediction with
hourly updates in clinical practice.

To address label imbalance, we used different strategies for
static and dynamic tasks. In static tasks, where survivors
significantly outnumbered nonsurvivors, we implemented
balanced sampling during training. This involved setting a fixed
number of samples for both minority and majority classes (eg,
200) during each gradient descent step to ensure balanced
subsets. Multiple iterations were performed in each epoch to
ensure full data use. Over many epochs, the model was exposed
to the entire dataset.

For dynamic tasks, balanced sampling was not applicable due
to continuous prediction. Instead, we introduced a balance factor
in the Cross-Entropy Loss function, assigning different weights
to each class to balance their contributions. For binary tasks,
the weighted Cross-Entropy Loss formula is:

where α ∈ [0,1] is the balance factor. This factor adjusts the
contributions of positive and negative samples to the loss. In
this study, α was determined as the inverse of the class
proportions, followed by normalization.

Model Interpretation
We applied the integrated gradients (IG) method to our deep
learning model to address the interpretability challenges posed
by its black-box nature. IG is a widely recognized technique
for feature attribution, quantifying the contribution of each input
feature to the model’s output. It achieves this by integrating the
gradients of the model’s output concerning the input features
along a path from a baseline input to the actual input [37]. This
approach ensures that the feature contributions are calculated
in a principled manner, based on their incremental effect on the
prediction. Unlike other attribution methods, IG satisfies key
properties such as completeness and sensitivity, making it a
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robust choice for understanding model predictions. By
leveraging IG, we aim to identify and interpret the features that
drive the model’s decision-making process, ensuring a
transparent link between input features and predictions.
Specifically, for an input x and a model F, IG is defined as:

where x' is a suitably chosen baseline, and α defines the path
from the baseline to the input. In practice, the integral is
approximated numerically as:

where m is the number of steps used for the approximation. The
baseline x' is chosen as a tensor of zeros. Continuous variables
were z score normalized, and categorical variables were 1-hot
encoded, making the 0 tensor a reasonable baseline for
standardized continuous features.

Model Evaluation
We evaluated the model’s performance using several metrics,
including the area under the receiver operating characteristic
curve (AUROC), the area under the precision-recall curve
(AUPRC), accuracy, recall, precision, and F1-score. We
conducted extensive sensitivity analyses across subgroups
defined by gender, age, and race. For the dynamic prediction
tasks, we also assessed the model’s performance at different
time points.

where TP represents true positives, TN represents true negatives,
FP represents false positives, and FN represents false negatives,
the 95% CIs were estimated using bootstrapping with 1000
samples.

Ethical Considerations
The MIMIC-IV database was publicly released after receiving
approval from the institutional review boards of Beth Israel
Deaconess Medical Center and the Massachusetts Institute of
Technology in Boston, United States. The eICU-CRD was made
publicly accessible after obtaining appropriate institutional
review board approvals from 208 hospitals in the United States.
Both databases contain fully deidentified data that are publicly
available for research purposes. Accordingly, this study was
determined to be exempt from further ethical review, and
informed consent was waived. No identifiable personal
information was accessed or used, and all analyses were
performed on anonymized datasets to protect participant privacy
and confidentiality. No compensation was provided to any
individual, as this study involved secondary analysis of existing,
deidentified data.

Results

To build the model, we included a total of 176,344 ICU stays
from the 2 databases, with 58,323 stays from the MIMIC-IV
database and 118,021 stays from the eICU-CRD database. Table
1 presents the baseline characteristics of the included patients
from both databases, using ICU stays as the unit of analysis.
Table S1 in Multimedia Appendix 1 shows the baseline
characteristics of the training, testing, and validation sets from
both MIMIC-IV and eICU-CRD. Among all included samples,
the overall in-hospital mortality rate was 8.1%. The in-hospital
mortality rate in the MIMIC-IV database was higher at 9.6%
compared to 7.3% in the eICU-CRD database.
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Table 1. Demographic characteristics of selected samples from different databases.

MIMIC-IVbeICU-CRDaOverall

58,323118,021176,344ICUc stays, n

58.85 (14.61)58.71 (14.93)58.76 (14.83)Age (years), mean (SD)

Gender, n (%)

24,696 (42.3)52,348 (44.4)77,044 (43.7)Female

33,627 (57.7)65,641 (55.6)99,268 (56.3)Male

0 (0)32 (0)32 (0)Other or unknown

Race, n (%)

1743 (3)1953 (1.7)3696 (2.1)Asian

6832 (11.7)14,517 (12.3)21,349 (12.1)Black or African American

2437 (4.2)4439 (3.8)6876 (3.9)Hispanic or Latino

38,773 (66.5)88,804 (75.2)127,577 (72.3)White

8538 (14.6)8308 (7)16,846 (9.6)Other or unknown

81.52 (95.56)84.62 (96.1)83.59 (95.93)ICU LoSd (hours), mean (SD)

615 (1.1)718 (0.6)1333 (0.8)12h_to_1d mortality, n (%)

1295 (2.2)1929 (1.6)3224 (1.8)12h_to_2d mortality, n (%)

2210 (3.8)3617 (3.1)5827 (3.3)12h_to_4d mortality, n (%)

3182 (5.5)5190 (4.4)8372 (4.7)12h_to_7d mortality, n (%)

5576 (9.6)8648 (7.3)14224 (8.1)In-hospital mortality, n (%)

aeICU-CRD: eICU Collaborative Research Database.
bMIMIC-IV: Medical Information Mart for Intensive Care IV.
cICU: intensive care unit.
dLoS: length of intensive care unit stay.

In the static prediction tasks triggered at the 12th hour after ICU
admission, such as 12-hour to 1-day mortality, 12-hour to 2-day
mortality, 12-hour to 4-day mortality, 12-hour to 7-day
mortality, in-hospital mortality after 12 hours, and ICU length
of stay greater than 2 days, the TBAL model consistently
outperformed the baseline LSTM model. For the 12-hour to

1-day mortality task, the AUROC of TBAL reached 95.9 (95%
CI 94.2-97.5) in the MIMIC-IV database and 93.3 (95% CI
91.5-95.3) in the eICU-CRD database. For more detailed
performance information, see Table 2 and Tables S7 and S8 in
Multimedia Appendix 1.
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Table 2. Performance of the models on various static tasks and continuous dynamic prediction tasks on the internal test set.

AUPRCc (%; 95% CI)AUROCb (%; 95% CI)Models

Outcome
prevalence
(%)TriggeringaDatabases and tasks

MIMIC-IVd

48.5 (43.2-58.3)95.9 (94.2-97.5)TBALe1.112th hour12 h to 1 d mortality

33.9 (24.5-42)91.2 (87.7-94.3)LSTMf1.112th hour12 h to 1 d mortality

45.2 (39.6-49.6)92.9 (91.3-94.7)TBAL2.212th hour12 h to 2 d mortality

40.8 (35.8-46.6)91.8 (90.1-93.5)LSTM2.212th hour12 h to 2 d mortality

47.4 (42.9-52.1)91.9 (90.5-92.8)TBAL3.812th hour12 h to 4 d mortality

42.5 (37.8-48.3)91.5 (90-92.5)LSTM3.812th hour12 h to 4 d mortality

44 (41.5-47.7)90.1 (89.6-91.3)TBAL5.512th hour12 h to 7 d mortality

40.6 (36.7-43.4)89.7 (88.4-90.9)LSTM5.512th hour12 h to 7 d mortality

52.4 (50.4-54.8)88.8 (88.1-89.6)TBAL9.612th hourIn-hospital mortality

50.4 (47.3-53.6)88.4 (86.9-89.5)LSTM9.612th hourIn-hospital mortality

95.1 (94.8-95.5)80.5 (79.8-81.2)TBAL82.212th hourICUg LoSh > 2 d

94.5 (94.2-94.9)78.1 (77.2-79.1)LSTM82.212th hourICU LoS > 2 d

41.3 (39.8-42.3)93.6 (93.2-93.9)TBAL2.24 hourlyDeath within the next 24 hours

42.9 (41.4-44.9)93.7 (93.4-94)LSTM2.24 hourlyDeath within the next 24 hours

eICU-CRDi

21.6 (16.4-27.9)93.3 (91.5-95.3)TBAL0.612th hour12 h to 1 d mortality

16.1 (12.3-21.1)92.8 (90.8-94.7)LSTM0.612th hour12 h to 1 d mortality

30.3 (25.1-35.1)91 (89.4-93.4)TBAL1.612th hour12 h to 2 d mortality

27.3 (22.4-32.1)90.9 (89.9-92)LSTM1.612th hour12 h to 2 d mortality

35.8 (32.6-39.7)89.8 (88.5-90.8)TBAL3.112th hour12 h to 4 d mortality

33.4 (30.9-37.3)89.1 (87.6-90)LSTM3.112th hour12 h to 4 d mortality

39.8 (36.8-43)89 (87.9-90)TBAL4.412th hour12 h to 7 d mortality

36.9 (33.5-40)88.4 (87.6-89.4)LSTM4.412th hour12 h to 7 d mortality

44.4 (41.7-46.6)87.1 (86.5-87.8)TBAL7.312th hourIn-hospital mortality

42.7 (40.6-45.7)86.7 (85.9-87.7)LSTM7.312th hourIn-hospital mortality

92.2 (91.9-92.5)74.5 (74-75.2)TBAL79.912th hourICU LoS > 2 d

92.1 (91.8-92.4)74.3 (73.8-74.9)LSTM79.912th hourICU LoS > 2 d

50 (49.2-50.7)91.9 (91.6-92.1)TBAL1.84 hourlyDeath within the next 24 hours

44.8 (44.3-45.5)91.5 (91.3-91.7)LSTM1.84 hourlyDeath within the next 24 hours

aThe trigger times for these tasks are all relative to the intensive care unit admission time.
bAUROC: area under the receiver operating characteristic curve.
cAUPRC: area under the precision-recall curve.
dMIMIC-IV: Medical Information Mart for Intensive Care IV.
eTBAL: time-aware bidirectional attention-based long short-term memory.
fLSTM: long short-term memory.
gICU: intensive care unit.
hLoS: length of intensive care unit stay.
ieICU-CRD: eICU Collaborative Research Database.

In the dynamic continuous mortality risk assessment tasks, the
performance of TBAL was comparable to that of the LSTM

model. Across the entire ICU stay, the AUROC reached 93.6
(95% CI 93.2-93.9) in the MIMIC-IV database and 91.9 (95%
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CI 91.6-92.1) in the eICU-CRD database. Further analysis of
the model’s performance at 4-hour intervals after ICU admission
revealed that the performance was not uniform throughout the
ICU stay. Both the TBAL and LSTM models showed an initially
lower performance, which gradually improved over time. By
the time of ICU discharge, the AUROC and AUPRC of the
TBAL model reached 98.9 (95% CI 98.6-99.2) and 92.1 (95%
CI 90.6-93.7) in the MIMIC-IV database and 95.4 (95% CI
95-95.9) and 71.3 (95% CI 69.3-73.8) in the eICU-CRD

database. Overall, the performance of the model in the
MIMIC-IV database was consistent with its performance in the
eICU-CRD database, although differences in AUPRC were
observed in some tasks. These differences may be related to
variations in the variable sets used in the 2 databases. Figure 2
and Tables S2 and S3 in Multimedia Appendix 1 provide a
detailed performance comparison for the dynamic task of
predicting mortality within the next 24 hours at various time
points.

Figure 2. Performance of different models in predicting mortality within the next 24 hours on the internal test set, evaluated every 4 hours throughout
the ICU stay. AUPRC: area under the precision-recall curve; AUROC: area under the receiver operating characteristic curve; eICU-CRD: eICU
Collaborative Research Database; ICU: intensive care unit; MIMIC-IV: Medical Information Mart for Intensive Care IV; LSTM: long short-term
memory; TBAL: time-aware bidirectional attention-based long short-term memory.

In cross-validation experiments, the AUROC for transferring
the model from MIMIC-IV to eICU-CRD was 0.813, while
transferring from eICU-CRD to MIMIC-IV resulted in an
AUROC of 0.761. For dynamic tasks, the performance of

MIMIC-IV and eICU-CRD was also very close, with AUROC
values of 0.9 and 0.87, respectively. In cross-generalization
testing for dynamic tasks, transferring from MIMIC-IV to
eICU-CRD achieved an AUROC of 0.85, while transferring

J Med Internet Res 2025 | vol. 27 | e69293 | p. 8https://www.jmir.org/2025/1/e69293
(page number not for citation purposes)

Zheng et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


from eICU-CRD to MIMIC-IV achieved an AUROC of 0.83.
Figure 3 and Table S4 in Multimedia Appendix 1 summarize

the cross-generalization performance results of the TBAL model
using data from both the MIMIC-IV and eICU-CRD databases.

Figure 3. Cross-generalization performance test results of the TBAL model on data from the MIMIC-IV and eICU-CRD databases. Static task refers
to predicting in-hospital mortality triggered 12 hours after ICU admission. Dynamic task refers to predicting mortality within the next 24 hours, triggered
every 4 hours after ICU admission. AUPRC: area under the precision-recall curve; AUROC: area under the receiver operating characteristic curve;
eICU-CRD: eICU Collaborative Research Database; ICU: intensive care unit; MIMIC-IV: Medical Information Mart for Intensive Care IV; TBAL:
time-aware bidirectional attention-based long short-term memory.

In the subgroup analysis, we evaluated the performance of the
TBAL model for both static and dynamic tasks across different
genders, age groups, and races. Table 3 shows the detailed
results of the subgroup analysis. For age groups, the model
performed better in predicting outcomes for patients aged
younger than 65 years compared to those aged 65 years and
older, regardless of whether the task was static or dynamic. For

gender, the model showed balanced performance between males
and females in both types of tasks. For race, we observed slight
differences in performance between racial groups. However,
the 95% CIs for AUROC and AUPRC overlapped across all
racial groups, suggesting that these differences were not
statistically significant. Overall, the model demonstrated
consistent performance across different racial groups.
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Table 3. Summary of the performance analysis of the TBALa model across different subgroups.

Dynamic taskc (95% CI)Static taskb (95% CI)Database and subgroup

AUPRCAUROCAUPRCeAUROCd

MIMIC-IVf

Age

41.6 (39.4-43.7)91.4 (90.8-91.9)47.8 (42.3-51.5)88.7 (87.5-90.5)<65

41.2 (39.1-42.8)88.4 (87.8-89.2)53 (49.2-56.2)85.6 (84.3-86.7)≥65

Gender

41.8 (39.8-43.7)90.6 (89.8-91.4)48.8 (44.3-52.2)87.4 (85.9-89.1)Female

41 (38.8-42.7)89.6 (88.9-90.2)50.8 (48-53.7)87.3 (85.9-88.5)Male

Race

48.9 (41.4-57.1)92.5 (90.6-94.4)50.2 (36.4-63.7)82.5 (76.4-89.2)Asian

38 (33.5-43.1)90.8 (88.8-92.5)42.7 (34.4-51.2)88.6 (86.1-90.8)Black or African American

45.4 (36.6-53.4)92.7 (90.9-94.2)45 (31.1-59.4)86.2 (81.4-91.1)Hispanic or Latino

39.5 (37.4-41.3)89.6 (89-90.3)47.7 (43.3-51.8)87.1 (85.9-88.4)White

46.2 (43.7-49)89.8 (88.5-90.8)62.8 (56.8-70)88.9 (86.8-91.6)Other or unknown

eICU-CRDg

Age

38.3 (37.1-39.1)90.4 (90-90.7)42.3 (39.9-45.8)88.1 (87.3-89.3)<65

35.5 (34.5-36.7)83.7 (83.3-84.2)45.8 (42.8-49.2)84.6 (83.4-86)≥65

Gender

36.6 (35.6-37.7)86 (85.5-86.3)43.5 (39.8-47.9)86.5 (84.9-87.8)Female

36.2 (35.4-37.2)87.7 (87.4-88.1)43.7 (40.9-47.3)86.6 (85.4-87.7)Male

Race

36.3 (32.2-40.2)80.7 (78.9-82.4)36 (20-55.7)83.2 (72.1-93.1)Asian

41 (39.3-42.9)87.7 (87-88.6)39.9 (33.4-47.7)86 (83.6-88.5)Black or African American

31.7 (27.9-34.5)85.4 (83.9-86.9)51.2 (40.2-63.2)89.5 (86-92.6)Hispanic or Latino

36.3 (35.5-37.1)87.3 (87-87.6)44.9 (42.3-47.3)86.4 (85.5-87.5)White

37.4 (34.4-40.9)86.2 (85.2-87.2)44.2 (36.9-53.2)88 (86.1-90.5)Other or unknown

aTBAL: time-aware bidirectional attention-based long short-term memory.
bStatic task: predicting in-hospital mortality triggered at the 12th hour after intensive care unit admission.
cDynamic task: predicting death within the next 24 hours triggered every 4 hours.
dAUROC: area under the receiver operating characteristic curve.
eAUPRC: area under the precision-recall curve.
fMIMIC-IV: Medical Information Mart for Intensive Care IV.
geICU-CRD: eICU Collaborative Research Database.

We used the IG algorithm to calculate the importance of
variables for each patient in both static and dynamic prediction
tasks based on the TBAL model. Figure 4 displays the ranked
importance of these variables. In static tasks, the variable
importance rankings in the MIMIC-IV and eICU-CRD databases
showed consistent patterns. In the MIMIC-IV database, blood
urea nitrogen, urine output, respiratory rate, lactate, and body
temperature were ranked as highly important. Similarly, in the
eICU-CRD database, lactate, Glasgow Coma Scale, blood urea
nitrogen, respiratory rate, and urine output were also ranked

highly. Overall, the top 20 variables in both databases included
many shared physiological and laboratory measures. In dynamic
tasks, the variable importance rankings also showed a high
degree of consistency between the 2 databases. In the MIMIC-IV
database, SpO2 (oxygen saturation), systolic blood pressure
(SBP), lactate, and diastolic blood pressure were among the
most important variables. In the eICU-CRD database, Glasgow
Coma Scale, SBP, lactate, base excess, and urine output were
ranked highly. Compared to static tasks, dynamic tasks
highlighted the importance of variables related to vasopressor
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use (eg, norepinephrine or vasopressin), which were consistently
ranked in the top 20 in both databases, indicating their relevance
for predicting dynamic mortality risk. Tables S10-S17 in

Multimedia Appendix 1 present the IG values of the top 20
features across different tasks in various subgroups.

Figure 4. Feature importance ranking for static and dynamic tasks based on the TBAL model. Static task refers to predicting in-hospital mortality
triggered 12 hours after ICU admission. Dynamic task refers to predicting mortality within the next 24 hours, triggered every 4 hours after ICU admission.
BUN: blood urea nitrogen; DBP: diastolic blood pressure; DT: delta time; eICU-CRD: eICU Collaborative Research Database; Fio2: fraction of inspired
oxygen; GCS: Glasgow Coma Scale; ICU: intensive care unit; MIMIC-IV: Medical Information Mart for Intensive Care IV; Resp: respiratory; SBP:
systolic blood pressure; SpO2: oxygen saturation; TBAL: time-aware bidirectional attention-based long short-term memory; UO: urine output; WBC:
white blood cell count.

Figure 5 shows the real-time dynamic mortality risk predictions
for a patient who died during hospitalization, providing a
comprehensive view of how the patient’s risk changed over
time. The top panel displays the predicted risk trajectory,
showing fluctuations in mortality risk at hourly intervals. These
dynamic changes reflect the model’s sensitivity to evolving
clinical conditions, such as critical interventions or physiological
deterioration. The middle panel shows the IG values of the top
20 features ranked by their global average absolute IG scores.
It reveals how the contribution of each variable to the predicted
risk changes over time. Notably, norepinephrine use, including
both its presence (mask) and dosage, shows consistently high
attribution scores during periods of elevated risk. This suggests
a strong association between vasopressor use and mortality risk
as an indicator of hemodynamic instability. Other features, such
as elevated lactate levels, low SBP, and persistently low urine

output, also have strong and time-specific effects during clinical
deterioration. The bottom panel displays the normalized values
of these top features over time, allowing a direct comparison
between model attributions and actual clinical trends. For
example, the sharp increase in lactate level occurred almost at
the same time as the rise in predicted risk. The IG scores for
anion gap also gradually increased as its values rose. This shows
how the model integrates both feature presence and temporal
patterns to generate risk predictions. In general, it is helpful to
first identify time points and variables with strong color intensity
in the feature importance map and then examine their
corresponding values in the feature value panel to assess
abnormal patterns. However, due to the complex temporal
dependencies and interactions among variables captured by the
model, the importance of a feature may not always be intuitively
interpretable.
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Figure 5. Case analysis of personalized continuous dynamic mortality risk assessment. The top panel shows the TBAL model’s dynamic mortality risk
predictions for the patient at 4-hour intervals after ICU admission. The middle panel displays the IG values of the top 20 features most associated with
mortality for this patient at each prediction time point during the ICU stay. The bottom panel shows how the values of these top 20 features changed
over time. BUN: blood urea nitrogen; DBP: diastolic blood pressure; GCS: Glasgow Coma Scale; ICU: intensive care unit; IG: integrated gradients;
SBP: systolic blood pressure; SpO2: peripheral capillary oxygen saturation; TBAL: time-aware bidirectional attention-based long short-term memory;
UO: urine output; WBC: white blood cell count.

Discussion

Principal Findings
In this study, we developed a dynamic mortality risk assessment
model focused on the ICU setting. The model provides risk
assessments at key time points after ICU admission and
continuous dynamic mortality risk evaluations throughout the
ICU stay, enabling personalized risk alerts. It was trained and
tested on dynamic variables from the MIMIC-IV and eICU-CRD
databases and demonstrated strong generalizability. The model
updates predictions hourly, providing personalized forecasts
that improve over time. By the time of ICU discharge, the model
achieved an AUROC of 98.9 in the MIMIC-IV database and
95.4 in the eICU-CRD database. Our model is interpretable,
offering population-level and individual-level rankings of the
most important dynamic features associated with mortality risk.
At the individual level, we observed that the IG values of
features change over time, reflecting the evolving mortality risk
as the treatment progresses. This adaptability makes our model
more useful than traditional scoring systems, such as SAPS or
APACHE, which generate a single score based on data from
the first day of ICU admission [24,38-42]. These findings
support the importance of continuously updating decision

support tools to adapt to changing clinical conditions and
provide real-time guidance to clinicians [39]. This dynamic tool
could be more effective than the static scores currently used in
ICU settings [38]. Early clinical decisions, such as whether to
initiate treatment and how aggressively to treat a patient, differ
significantly from later decisions, such as whether to withdraw
life-sustaining therapy [43]. For example, we found that after
aggressive treatment, a patient’s mortality risk might decrease
during a certain period. This finding aligns with clinical
expectations. Overall, we observed complex interactions among
features over time, emphasizing the need for decision support
tools based on real-time ML. These features interact in complex,
nonlinear ways, unlike the pairwise or 3-way interactions
commonly modeled in generalized linear models. Although the
data are longitudinal and irregular, the TBAL architecture
enables learning from complex sequence patterns while
modeling multidimensional interactions between variables.
However, this complexity also makes clinical interpretation of
the results more challenging, requiring cautious use of the model
in practice. In addition to technical considerations, the ethical
implications of real-time risk prediction should not be
overlooked. Issues such as patient privacy, informed consent,
and the responsible use of predictive models in clinical
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workflows must be carefully addressed to ensure safe and
equitable deployment.

Comparison With Prior Work
From a performance perspective, our model achieved an
AUROC of up to 95.9 for predicting in-hospital mortality at the
12th hour after ICU admission, significantly outperforming
traditional severity scoring systems. For example, in a
multiethnic US cohort, APACHE-IV achieved an AUROC of
86 [27], while SAPS-III showed an AUROC of 79 in an external
surgical ICU validation study [44]. This improvement is likely
due to the additional benefits of using RNN-based deep learning
models, which are effective at capturing longitudinal patterns
[38], and the incorporation of multiple data sources, providing
richer information through a larger feature set. In previous
studies on in-hospital mortality risk assessment, Moreno et al
[45] reported an AUROC of 0.814 for the SAPS-III model in a
cohort from Northern Europe. However, external validation in
Denmark showed a performance drop to an AUROC of 0.69
(95% CI 0.63-0.75) [46]. This decline is similar to the
performance drop observed in our study when transferring a
model trained on the MIMIC-IV database to the eICU-CRD
database. This decline may be due to distribution bias in
routinely collected data, which can vary across different centers,
affecting the model’s generalization performance. The
aggregation and imputation methods were selected based on
the EMR-LIP framework and aligned with clinical practice,
which may enhance the model’s robustness and generalizability
by better reflecting real-world data patterns. Integrating domain
expertise into the preprocessing design helps tailor the pipeline
to clinical realities, which in turn supports model stability and
generalization across different settings. Ensuring consistency
in preprocessing steps further safeguards model performance
during deployment and external validation. Standardized
preprocessing across datasets may also help reduce the impact
of distribution bias on external performance. Although missing
data is unavoidable in longitudinal irregular datasets, our
recommended imputation methods mimic medical reasoning.
For example, a missing pH value might indicate that a clinician
decided further analysis was unnecessary. In such cases, carrying
forward the most recent value for imputation often has clinical
relevance. The TBAL model effectively learns information from
irregular time intervals and captures the relative importance of
features at different time points. These abilities are key to its
performance improvement [47,48]. The results from external
validation experiments show that using data from similarly
homogeneous settings, such as MIMIC-IV or eICU-CRD, allows
the model to be practical for use with patients typically
encountered by clinicians in their daily work.

Subgroup Analysis and Algorithmic Bias
Gender and racial biases have played a significant role in the
recent critical discussions about biased decisions made by ML
models [27]. Such biases can also be observed in the predictions
made by the proposed TBAL model. In our subgroup analysis,
we found a performance bias related to age. The AUROC for
patients aged younger than 65 years was significantly higher
than for those aged 65 years and older. This may be because
older patients tend to have more complex conditions, which

makes predictions more challenging for the model. For race,
we observed that the AUROC for Asian patients was relatively
low in both the MIMIC-IV and eICU-CRD databases. However,
in the dynamic continuous prediction tasks within MIMIC-IV,
the AUROC for Asian patients was relatively higher. We believe
these differences are due to factors such as sample size, the
balance of labels within subgroups, and sample
representativeness [49]. These factors differ fundamentally from
the performance bias observed in the age subgroups. For gender
subgroups, the model showed excellent consistency across
different types of tasks and databases. A potential solution to
address subgroup performance bias is to locally retrain the model
using a more diverse dataset if the model was pretrained on
biased data. Until then, it is essential to continuously evaluate
predictions, especially considering that cohort compositions
may change in the future.

Model Interpretability and Ethical Considerations
Concerning model interpretability, the 2018 European General
Data Protection Regulation raised concerns about black-box
predictions. It states that individuals have the right to receive
“meaningful information about the logic involved, as well as
the significance and envisaged consequences” when automated
decisions are used [50,51]. One advantage of our model is that
the IG method allows us to explain the importance of features
associated with ICU mortality both at the population level and
for individual patients at any given time. This enables the model
to support clinical decision-making by providing real-time
information about a patient’s mortality risk and the key features
associated with their survival. Our findings highlight the
importance of continuously updating mortality predictions.
Patient mortality risk can change dynamically, and the
contributing features can also shift over time. However, the IG
method only identifies correlations between features and
prediction outcomes without inferring causality. For example,
the model identifies vasopressor use as positively correlated
with increased mortality risk. This correlation likely reflects
the fact that patients receiving vasopressors are in critical
condition, even though the medication itself is intended to
improve their state. While the importance of vasopressor use is
correctly identified, the findings cannot directly inform treatment
decisions. Many ML methods remain opaque. Although we
have made progress by using the IG method to identify and
measure the factors driving predictions, IG values cannot address
algorithmic bias. Algorithmic bias is a critical issue in ML
prediction models. It arises because these models lack an
underlying causal structure and rely entirely on historical human
behaviors to make predictions. The absence of causal structure
means the model may perform poorly for minority groups, as
it has limited exposure to such patients during training.

Limitations and Future Directions
This study has several limitations. First, although the model
was trained and validated using 2 large publicly available ICU
datasets (MIMIC-IV and eICU-CRD), they may not fully
represent ICU populations in other geographic regions or health
care systems. MIMIC-IV is derived from a single academic
medical center, while eICU-CRD includes data from multiple
hospitals with different clinical practices. Differences in care
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delivery, documentation, and data collection could lead to
inconsistencies and affect model generalizability. Despite
harmonization efforts, residual heterogeneity may remain.
Therefore, further validation in prospective and non-US ICU
settings is necessary to confirm the model’s applicability in
broader clinical contexts. Additionally, the use of an all-0
baseline in integrated gradients may not be optimal for 1-hot
encoded categorical features, as it does not correspond to a valid
clinical category and could bias attribution results.

Conclusion
In summary, we developed an interpretable TBAL model for
the dynamic real-time assessment of mortality risk in ICU

patients. The model was trained, internally validated, and
cross-validated externally using the MIMIC-IV and eICU-CRD
databases. It demonstrated significantly better performance
compared to traditional scoring systems and the baseline LSTM
model. As the ICU stay progresses, the predictive performance
of the model improves over time. Additionally, the model
captured dynamic changes in both mortality risk and feature
importance over time, offering insights that are not available
from existing static prognostic scoring systems. However, before
being used as a bedside tool, the model’s results need to be
validated in randomized clinical trials.
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