
Review

Diagnostic Performance of Artificial Intelligence–Based Methods
for Tuberculosis Detection: Systematic Review

Seng Hansun1,2, MCS; Ahmadreza Argha3,4,5, PhD; Ivan Bakhshayeshi3,6, MRES; Arya Wicaksana7, MEngSc; Hamid

Alinejad-Rokny4,5,6, PhD; Greg J Fox8, PhD; Siaw-Teng Liaw9, PhD; Branko G Celler10, PhD; Guy B Marks1,2,11, PhD
1School of Clinical Medicine, South West Sydney, UNSW Medicine & Health, UNSW Sydney, Sydney, Australia
2Woolcock Vietnam Research Group, Woolcock Institute of Medical Research, Sydney, Australia
3Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, Australia
4Tyree Institute of Health Engineering, UNSW Sydney, Sydney, Australia
5Ageing Future Institute, UNSW Sydney, Sydney, Australia
6BioMedical Machine Learning Lab, Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, Australia
7Informatics Department, Universitas Multimedia Nusantara, Tangerang, Indonesia
8NHMRC Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
9School of Population Health and School of Clinical Medicine, UNSW Sydney, Sydney, Australia
10Biomedical Systems Research Laboratory, School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, Australia
11Burnet Institute, Melbourne, Australia

Corresponding Author:
Seng Hansun, MCS
School of Clinical Medicine, South West Sydney
UNSW Medicine & Health
UNSW Sydney
High Street, Kensington, NSW
Sydney, 2052
Australia
Phone: 61 456541224
Email: s.hansun@unsw.edu.au

Abstract

Background: Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious
diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic
pathway, so various artificial intelligence (AI)–based methods have been developed to address this issue.

Objective: We aimed to provide a comprehensive evaluation of AI-based algorithms for TB detection across various data
modalities.

Methods: Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines, we
conducted a systematic review to synthesize current knowledge on this topic. Our search across 3 major databases (Scopus,
PubMed, Association for Computing Machinery [ACM] Digital Library) yielded 1146 records, of which we included 152 (13.3%)
studies in our analysis. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies version 2) was performed for the
risk-of-bias assessment of all included studies.

Results: Radiographic biomarkers (n=129, 84.9%) and deep learning (DL; n=122, 80.3%) approaches were predominantly
used, with convolutional neural networks (CNNs) using Visual Geometry Group (VGG)-16 (n=37, 24.3%), ResNet-50 (n=33,
21.7%), and DenseNet-121 (n=19, 12.5%) architectures being the most common DL approach. The majority of studies focused
on model development (n=143, 94.1%) and used a single modality approach (n=141, 92.8%). AI methods demonstrated good
performance in all studies: mean accuracy=91.93% (SD 8.10%, 95% CI 90.52%-93.33%; median 93.59%, IQR 88.33%-98.32%),
mean area under the curve (AUC)=93.48% (SD 7.51%, 95% CI 91.90%-95.06%; median 95.28%, IQR 91%-99%), mean
sensitivity=92.77% (SD 7.48%, 95% CI 91.38%-94.15%; median 94.05% IQR 89%-98.87%), and mean specificity=92.39% (SD
9.4%, 95% CI 90.30%-94.49%; median 95.38%, IQR 89.42%-99.19%). AI performance across different biomarker types showed
mean accuracies of 92.45% (SD 7.83%), 89.03% (SD 8.49%), and 84.21% (SD 0%); mean AUCs of 94.47% (SD 7.32%), 88.45%
(SD 8.33%), and 88.61% (SD 5.9%); mean sensitivities of 93.8% (SD 6.27%), 88.41% (SD 10.24%), and 93% (SD 0%); and
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mean specificities of 94.2% (SD 6.63%), 85.89% (SD 14.66%), and 95% (SD 0%) for radiographic, molecular/biochemical, and
physiological types, respectively. AI performance across various reference standards showed mean accuracies of 91.44% (SD
7.3%), 93.16% (SD 6.44%), and 88.98% (SD 9.77%); mean AUCs of 90.95% (SD 7.58%), 94.89% (SD 5.18%), and 92.61%
(SD 6.01%); mean sensitivities of 91.76% (SD 7.02%), 93.73% (SD 6.67%), and 91.34% (SD 7.71%); and mean specificities of
86.56% (SD 12.8%), 93.69% (SD 8.45%), and 92.7% (SD 6.54%) for bacteriological, human reader, and combined reference
standards, respectively. The transfer learning (TL) approach showed increasing popularity (n=89, 58.6%). Notably, only 1 (0.7%)
study conducted domain-shift analysis for TB detection.

Conclusions: Findings from this review underscore the considerable promise of AI-based methods in the realm of TB detection.
Future research endeavors should prioritize conducting domain-shift analyses to better simulate real-world scenarios in TB
detection.

Trial Registration: PROSPERO CRD42023453611; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023453611

(J Med Internet Res 2025;27:e69068) doi: 10.2196/69068
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Introduction

Tuberculosis (TB) stood as the dominant infectious disease
threat worldwide, affecting over 10.5 million individuals and
claiming the lives of 1.3 million people in 2022 [1]. A pivotal
strategy in halting this worldwide epidemic revolves around
breaking the transmission chain by identifying and treating all
individuals with infectious forms of TB [2]. Various diagnostic
tools have been introduced, including chest radiography,
tuberculin skin tests, interferon-gamma release assays, sputum
smear microscopy, sputum mycobacterial culture, and an array
of nucleic acid amplification tests [3]. Nonetheless, each of
these diagnostic modalities faces significant implementation
challenges, and none alone is deemed adequate for the diagnostic
pathway. Consequently, researchers have endeavored to
integrate artificial intelligence (AI)–based algorithms to augment
the detection of TB.

AI encompasses a spectrum of techniques enabling computer
programs to tackle intricate problems by emulating human
cognitive processes [4]. Presently, 2 widely used terms denote
AI techniques that necessitate minimal-to-no human
intervention: machine learning (ML) and deep learning (DL).
ML possesses the capability to discern meaningful patterns
within datasets autonomously, without explicit programming
[5]. Conversely, DL emerges as a subdomain within ML,
leveraging deep and intricate neural networks to extract features
or patterns from datasets for subsequent analysis [5,6].

In this study, we aimed to comprehensively evaluate the
performance of AI-based algorithms, particularly ML and DL,
for TB detection. This aligns closely with the first pillar of the
World Health Organization (WHO) End TB Strategy, which
includes systematic screening for TB in high-risk groups [7].
In fact, a novel recommendation was issued by WHO in 2021:
the approval of AI tools to analyze chest X-rays (CXRs) for TB
detection in place of human readers [8].

Several notable review papers have emerged. Jimmy et al [9]
conducted a meticulous systematic review, delving into various
DL methods for TB detection based on CXR. Similarly, Sharma

et al [10] contributed a narrative survey spotlighting DL-based
convolutional neural networks (CNNs) tailored for TB diagnosis
from CXR. Zeyu et al [11] embarked on a narrative review
aimed at dissecting diverse DL-based approaches for TB
diagnosis. Oloko-Oba and Viriri [12] scrutinized DL techniques
for TB detection via chest radiographs. Santosh et al [13]
conducted a systematic review, albeit with a narrower time
frame spanning 5 years (2016-2021), focusing on DL for TB
screening using CXR. Carvalho et al [14] contributed a
systematic review on DL techniques used for classifying TB
bacilli in microscopic Ziehl-Neelsen (ZN) sputum smear images.
Da Silva Barros et al [15] conducted a systematic review on
ML models geared toward predicting TB treatment outcomes.
Distinguished from these endeavors, our current review took a
broader perspective, encompassing not only DL but also ML
as integral components of AI-based methods for TB detection.

Siddiqui and Garg [16] examined recent studies of intelligent
techniques (ML and DL) for diagnosing pulmonary TB. Singh
et al [17] scrutinized the drawbacks of conventional TB
diagnostics, while exploring the utility of ML and DL methods
for TB diagnosis. Additionally, they highlighted several
commercial computer-aided detection (CAD) tools as promising
AI-driven instruments. Notably, both reviews were reported as
narrative reviews, rather than using the systematic review
methodology we adopted here.

Harris et al [18] meticulously conducted a systematic review
focusing on the diagnostic accuracy of AI-based tools in TB
detection using CXR. Hansun et al [19] recently published a
systematic review examining the effectiveness of ML and DL
methods for TB detection using CXR. Both studies aligned
closely with our review but were limited to CXR. In contrast,
our review encompassed a broader spectrum of diagnostic data,
including radiographic, biochemical, physiological, and other
clinical data. This broader scope enabled a more comprehensive
evaluation of AI-based methods across diverse data modalities
for TB detection.
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Methods

Design, Registration, and Information Sources
In conducting this systematic review, we adhered to the
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) 2020 guidelines (Multimedia Appendix 1)
[20]. Our review protocol, in accordance with the
PRISMA-Protocol 2015 statement [21,22], was registered on
PROSPERO (Prospective Register of Systematic Reviews; ID
CRD42023453611) [23,24].

The systematic review drew upon 3 primary academic search
systems and online databases: Scopus, PubMed, and the
Association for Computing Machinery (ACM) Digital Library.
These platforms are widely recognized as pivotal sources for

comprehensive literature reviews [25]. The searches
encompassed all published literature up to July 25, 2023.

Ethical Considerations
As this systematic literature review focused on retrospective
studies, no ethical approval was required.

Search Strategy
For our search strategy, we used 3 primary keywords: “artificial
intelligence,” “tuberculosis,” and “detect*.” Additionally, we
incorporated several alternative terms for each main keyword
to ensure comprehensive coverage during the search process,
resulting in the findings outlined in Table 1. Initially, we
identified a total of 1146 records; however, certain records were
not available from the respective databases (n=58, 5.1%). The
full search queries can be seen in Multimedia Appendix 2.

Table 1. Sample search queries and results.

ACMa, n/N (%)PubMed, n/N (%)Scopus, n/N (%)Search query

5/1146 (0.4)284/1146 (24.8)857/1146 (74.8)(TITLE-ABS-KEY (“Machine Learning” OR “Predictive Analytics” OR “Statistical
Learning” OR “Deep Learning” OR “Artificial Intelligence” OR “AI”) AND TITLE-ABS-
KEY (“Tuberculosis” OR “TB”) AND TITLE-ABS-KEY (“Early detection” OR “detect*”
OR “Early diagnosis” OR “diagnosis”)) AND DOCTYPE (ar OR cp) AND ( LIMIT-TO
(LANGUAGE , “English”)) AND (LIMIT-TO (SRCTYPE , “j”) OR LIMIT-TO (SRCTYPE
, “p”))

05/58 (8.6)53/58 (91.4)Not available for download (n=58)

5/1088 (0.5)279/1088 (25.6)804/1088 (73.9)Available for download (n=1088)

aACM: Association for Computing Machinery.

Inclusion and Exclusion Criteria, Data Extraction, and
Storage
All downloaded records underwent scrutiny against the inclusion
and exclusion criteria outlined for this review study. There were
4 criteria that all included studies had to meet: (1) full-text
papers reporting original data published in peer-reviewed
journals or proceedings, (2) cross-sectional diagnostic test
evaluations, (3) papers focused on TB detection using AI, and
(4) papers written in English.

The information extracted from each included study comprised
the title, authors, publication year, journal title, objectives, and
outcome measures. Dataset characteristics, including their source
and total number of data items, were documented, along with
details regarding the modality and type of data used. The AI
methods applied, evaluation techniques used, performance
metrics, best results obtained, and any comparisons with other
studies were recorded. Additionally, outcome types, citation
counts, and information regarding sponsors or funding sources,
were also gathered as part of the comprehensive extraction
process.

Each review author was actively engaged in the
conceptualization and execution of all phases outlined in the
PRISMA 2020 guidelines. At least 2 review authors were
involved in each phase, including identification, screening, and
assessment of eligibility for inclusion. To ensure accuracy and
transparency, we documented the results of each phase using a
standardized spreadsheet.

Outcomes Assessed
The first outcome from this review was the compilation of
diverse AI methods used for TB detection. The second outcome
encompassed diagnostic performance exhibited by various AI
methods in TB detection. This summary encompassed key
metrics, such as accuracy, area under the receiver operating
characteristic (ROC) curve (AUROC), sensitivity, and
specificity, providing valuable insights into the efficacy and
reliability of these methods in clinical practice.

Strategy for Data Analysis and Synthesis
We adopted a narrative synthesis approach, integrating
information extracted from the included studies within the text.
The narrative synthesis method facilitated an in-depth
exploration of the relationships and insights both within and
across included studies, stratified by various attributes, such as
modality, biomarker types, and AI methods. Descriptive
statistics, primarily using box-whisker and violin plots, alongside
tables and figures, presented the quantitative outcomes of this
systematic review. Given the pronounced heterogeneity observed
in study designs, comparators, biomarker types, evaluation
techniques, and AI methods encompassed in this review study,
a meta-analysis was deemed impractical.

Risk-of-Bias Assessment
In assessing the risk of bias within the included studies, we used
the QUADAS-2 (Quality Assessment of Diagnostic Accuracy
Studies version 2) tool. This tool is widely recommended for
systematic reviews as it enables the evaluation of bias and
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applicability in diagnostic accuracy studies [26]. It comprises
4 key domains: (1) patient selection, (2) index test, (3) reference
standard, and (4) flow and timing. To tailor the assessment to
the specific focus of this review on evaluating AI-based
methods’performance in TB detection, adjustments were made
to the questions in the QUADAS-2 tool. Two review authors
(SH and AW) assessed each included study, and a third opinion
was sought from the author AA or the author GBM in the case
of disagreements.

Results

Overview
Figure 1 delineates all the processes conducted throughout the
systematic review. We adhered to the PRISMA 2020 flowchart,
including the incorporation of a process timeline and the
inclusion of a registered protocol status in PROSPERO.

Figure 1. PRISMA 2020 flowchart with timeline and PROSPERO information. ACM: Association for Computing Machinery; AI: artificial intelligence;
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analysis; TB: tuberculosis.

Of the 1146 records initially identified from Scopus (n=857,
74.8%), PubMed (n=284, 24.8%), and ACM Digital Library
(n=5, 0.4%), 58 (5.1%) were found to be unavailable. Upon
checking and removing duplicates (n=227, 20.9%), we were
left with 861 (79.1%) unique titles to be passed to the screening
phase. Subsequently, titles, abstracts, and keywords underwent
examination based on 4 primary selection criteria, where 413
(48%) records remained for eligibility assessment.

All 413 records underwent thorough assessment by examining
their full-text content. From this pool, 261 (63.2%) papers were
excluded, leaving us with a total of 152 (36.8%) papers being
included as part of this systematic review. Subsequently, the
data extraction process was carried out for all included studies.

The entirety of the review process spanned approximately 6
months (July 2023-January 2024).

General Characteristics of Included Studies
A summary of the general characteristics of the 152 studies
included in this systematic review is included in Tables 2 and
3. The majority of the included studies opted for a single
modality (n=141, 92.8%), with a smaller subset using a
multimodal approach (n=11, 7.2%). Among the various data
types used, radiographic data emerged as the most prevalent
data type (n=129, 84.9%), followed by biochemical (n=21,
13.8%) and physiological (n=16, 10.5%) data types. Several
studies using a multimodal approach integrated more than 1
data type, such as a combination of radiographic and
physiological data types.

J Med Internet Res 2025 | vol. 27 | e69068 | p. 4https://www.jmir.org/2025/1/e69068
(page number not for citation purposes)

Hansun et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Summary of mutually exclusive general characteristics of the included studies (N=152).

Studies, n (%)Characteristics

Modality

141 (92.8)Single

11 (7.2)Multimodal

Evaluation technique

95 (62.5)Holdout

48 (31.6)k-Fold CVa

9 (5.9)External data

Outcome type

143 (94.1)Model

8 (5.3)Application/prototype

1 (0.7)Clinical evaluation

89 (58.6)TLb

68 (44.7)Comparison with other studies

78 (51.3)Funding/sponsor

aCV: cross-validation.
bTL: transfer learning.

Table 3. Summary of nonmutually exclusive general characteristics of the included studies (N=152).

Studies, n (%)Characteristics

AIa type

49 (32.2)MLb

122 (80.3)DLc

Reference standard

103 (67.8)Human reader

43 (28.3)Bacteriological

24 (15.8)Not available

Type of data

129 (84.9)Radiographic

21 (13.8)Biochemical

16 (10.5)Physiological and clinical

aAI: artificial intelligence.
bML: machine learning.
cDL: deep learning.

In terms of evaluation techniques, the majority of studies (n=95,
62.5%) used the holdout evaluation technique, which involves
dividing the entire dataset into training and test sets. In total,
48 (31.6%) studies used the k-fold cross-validation (CV)
technique, dividing the dataset into k partitions and conducting
the evaluation k times. Only 9 (5.9%) studies incorporated
external datasets during the evaluation phase. Of the 152
included studies, 143 (94.1%) focused on AI model
development, while 8 (5.3%) studies concentrated on application
or prototype creation, and 1 (0.7%) study examined the clinical
evaluation of AI-based CAD tools.

Regarding the AI approaches, a large number of studies (n=122,
80.3%) used various DL methods, while 49 (32.2%) studies
used ML methods. We also collected information regarding
various reference standards used in the included studies. We
classified them into 2 groups, namely the human reader and
bacteriological standards. Of the 152 included studies, 103
(67.8%) used human reader reference standards, 43 (28.3%)
used bacteriological reference standards, and 24 (15.8%) did
not report any reference standard. Similar to the data-types
group, both AI-type and reference standard groups were not
mutually exclusive.
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In addition, 89 (58.6%) studies used the TL approach, a
relatively recent and validated strategy for addressing
domain-specific challenges [27], especially prevalent in studies
using DL methods. Moreover, 68 (44.7%) studies conducted
comparisons with multiple prior studies. Notably, an equal
proportion of studies received funding or sponsorship from
various entities (n=78, 51.3%) compared to those that did not
receive any funding (n=74, 48.7%). All included studies were
published between 2011 and 2023.

A total of 141 distinct data sources were identified across the
included studies, comprising 2,072,457 records. Among these,
the most frequently used data sources were Shenzhen (SZ; n=51,
36.2%), Montgomery County (MC; n=46, 32.6%), Kaggle TB
CXR (n=6, 4.3%), and TBX11K (n=5, 3.5%), all of which
provided radiographic data. MC and SZ were the predominant
data sources, both publicly available CXR datasets from the US
National Library of Medicine. MC contains 138 images, while
SZ offers 662 images [28]. The Kaggle TB CXR dataset contains
7000 images, although only 4200 (60%) are publicly accessible
[29]. Conversely, TBX11K, introduced in 2020, stands out as
a newer and more extensive CXR dataset for TB-related
research, featuring a total of 11,200 images [30]. For further
insights into the extracted data from all included studies, detailed
information is available in Multimedia Appendix 3.

AI Techniques for TB Detection
Among the 152 included studies, the majority were published
within the past 8 years, with only 3 (2%) studies predating 2016
[31-33]. As of January 18, 2024, these studies collectively
garnered 6070 citations on Google Scholar. Remarkably, the
top 3 (2%) cited publications were identified as Lakhani and
Sundaram [34] with 1695 citations, Pasa et al [35] with 312
citations, and Lopes and Valiati [36] with 260 citations. This
underscored the burgeoning interest among researchers in
integrating AI-based methods into TB detection studies.

The included studies implemented various AI-based algorithms,
which could be broadly categorized into 2 major approaches:
ML and DL. Specifically, 102 (67.1%) studies used DL methods
[30,34,35,37-135], while 30 (19.7%) studies used ML techniques
[31-33,136-162]. Additionally, 19 (12.5%) studies used a
combination of both ML and DL approaches [36,163-180].
Furthermore, 1 (0.7%) study [181] focused on the
implementation of a DL-based CAD tool, namely Lunit
INSIGHT v4.7.2, specifically designed for systematic TB
screening in a low-prevalence setting.

Figure 2 illustrates the diverse array of ML methods used in the
included studies. Notably, support vector machines (SVMs;
n=33, 21.7%), random forests (RFs; n=17, 11.2%), and logistic
regression (LR; n=15, 9.9%) emerged as the 3 most prevalent
ML techniques.

Figure 2. Different ML methods identified from the included studies. ANN: artificial neural network; BMO: bird mating optimizer; DT: decision tree;
DTE-SVM: deep transferred EfficientNet with support vector machine; ELM: extreme learning machine; ERT: extremely randomized tree; GBM:
Generalized Boosting Machine; GENFIS: genetic-neuro-fuzzy inferential system; GMM: Gaussian mixture model; kNN: k nearest neighbor; Lasso:
least absolute shrinkage and selection operator; LBP: local binary pattern; LDA: linear discriminant analysis; LR: logistic regression; MBO: monarch
butterfly optimization; ML: machine learning; MLP: multilayer perceptron; MLSM: multilevel similarity measure; NB: naïve Bayes; OSELM: online
sequential extreme learning machine. PLS-DA: partial least squares–discriminant analysis; PCA: principal component analysis; QD: quadratic discriminant;
RF: random forest; SLDT: stacked loopy decision tree; SLFN: single hidden layer feedforward neural network; SVM: support vector machine; WSO:
water strider optimization; XGBoost: extreme gradient boosting.

CNNs were the predominant DL method among the included
studies. Alongside custom CNNs (n=39, 25.7%), many
researchers have leveraged established DL architectures, notably
including Visual Geometry Group (VGG)-16 (n=37, 24.3%),

ResNet-50 (n=33, 21.7%), and DenseNet-121 (n=19, 12.5%).
Figure 3 provides an overview of the various DL methods
identified in the included studies.
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Figure 3. DL methods identified from the included studies. AFC-CNN: adaptive fractional crow convolutional neural network; BCNN: Bayesian-based
convolutional neural network; bi-LSTM: bidirectional long short-term memory; BRANN: Bayesian regularization artificial neural network; CBAM:
convolutional block attention module; CNN: convolutional neural network; DenseNet-SPP: DenseNet with spatial pyramid pooling; DL: deep learning;
FC-SVNN: fractional crow search–based deep convolutional neural network; FCOS: fully convolutional one stage; GAF-CNN: Gramian angular field
convolutional neural network; GAN: generative adversarial network; GCN: global complex network; GIN: graph isomorphism network; GRU: gated
recurrent unit; IEViT: image enhanced vision transformer; LCN: local complex network; LSTM: long short-term memory; MSI-PTDM: multistream
integration–pulmonary tuberculosis diagnosis model; MT-MinCutPool: multivariate time series with MinCutPool; RCNN: region-based convolutional
neural network; SSD: single-shot multibox detector; VGG: Visual Geometry Group; ViT: vision transformer; YOLO: you only look once.

Regarding the diagnostic performance of AI methods used in
the literature, the most frequently used evaluation metrics
encompassed accuracy (n=128, 84.2%), sensitivity (n=112,
73.7%), the AUC (n=87, 57.2%), and specificity (n=77, 50.7%).
Accuracy denotes the proportion of correctly predicted cases,
encompassing true positives and true negatives among all cases
[182]. Sensitivity measures a model’s ability to accurately
identify individuals with a condition [183,184]. The AUC,

derived from the ROC curve, quantitatively assesses a model’s
performance [182]. Specificity gauges a model’s accuracy in
identifying individuals without a condition [183,184]. Table 4
presents the distribution of various performance metrics
identified in the included studies. For an in-depth exploration
of the performance metrics used across the included studies,
refer to the detailed description provided in Multimedia
Appendix 4.
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Table 4. Different performance evaluation metrics in the included studies (N=152).

Studies, n (%)Metric

128 (84.2)Accuracy

87 (57.2)AUROCa

112 (73.7)Sensitivity/recall/true-positive rate

77 (50.7)Specificity/true-negative rate

56 (36.8)Precision/positive predictive value

9 (5.9)Negative predictive value

55 (36.2)F1-score

1 (0.7)Average recall

2 (1.3)Mean average precision

7 (4.6)Matthews correlation coefficient

1 (0.7)True detection rate

1 (0.7)Area under the alternative free-response ROCb curve

1 (0.7)Error loss

3 (2.0)Cohen kappa

2 (1.3)Root mean square error

4 (2.6)False positive rate

1 (0.7)False negative rate

1 (0.7)Squared error

1 (0.7)Balanced accuracy

1 (0.7)Fowlkes-Mallows index

aAUROC: area under the receiver operating characteristic curve.
bROC: receiver operating characteristic.

AI Diagnostic Performance
Figure 4 provides a comprehensive overview of the overall
performance results across all included studies. From the
depicted box plot, it is evident that accuracy ranged from
46.48% [59] to 100% [118], with a mean value of 91.93% (SD
8.10%, 95% CI 90.52%-93.33%) and a median of 93.59% (IQR
88.33%-98.32%). Similarly, the AUC ranged from 45.96% [59]
to 100% [72,78,96,178], with a mean value of 93.48% (SD
7.51%, 95% CI 91.90%-95.06%) and a median of 95.28% (IQR
91%-99%). Sensitivity spanned from 60% [156] to 100%
[85,92,100,118,128,132,141,146,163,178,181], with a mean

value of 92.77% (SD 7.48%, 95% CI 91.38%-94.15%) and a
median of 94.05% (IQR 89%-98.87%). Meanwhile, specificity
ranged from 53.2% [129] to 100% [113,162,174,177], with a
mean value of 92.39% (SD 9.4%, 95% CI 90.30%-94.49%) and
a median of 95.38% (IQR 89.42%-99.19%). Several outliers
were detected for each metric, including 4 for accuracy, at
46.48% [59], 63% [126], 63.9% [129], and 70% [156]; 2 for
the AUC, at 45.96% [59] and 69.2% [129]; 3 for sensitivity, at
60% [156], 65.52% [155], and 69.07% [143]; and 5 for
specificity, at 53.2% [129], 60% [146], 60.8% [168], 69.44%
[67], and 73% [152].
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Figure 4. Overall accuracy, AUC, sensitivity, and specificity of the included studies. AUC: area under the curve.

We conducted further performance comparisons based on
several criteria, including whether a study used the TL method
and whether it adopted a single (S) or multimodal (M) approach.

Figure 5 presents split-grouped violin plots illustrating the
comparative performance results of the included studies based
on TL (yes [Y], no [N]) and the modality used.

Figure 5. Comparative performance based on TL (left) and modality (right). AUC: area under the curve; M: multimodal; N: no; S: single; TL: transfer
learning; Y: yes.
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We also examined the performance of AI methods used in all
the included studies based on the AI techniques applied (ML,
DL, or both [ML/DL]), the types of data or biomarkers used
(radiographic [R], molecular [M], physiological [P]), and the

reference standard used (human [H], bacteriological [B], or both
[H/B]). Figure 6 showcases the box plots, offering a comparative
analysis of the performance results of the included studies based
on AI methods, biomarker types, and reference standards.

Figure 6. Comparative performance based on AI methods (left), biomarker types (middle), and reference standards (right). AI: artificial intelligence;
AUC: area under the curve; B: bacteriological; DL: deep learning; H: human; H/B: both human and bacteriological; M: molecular; ML: machine learning;
ML/DL: both machine learning and deep learning; P: physiological; R: radiographic.

Specifically, the AI performance across different biomarker
types showed mean accuracies of 92.45% (SD 7.83%), 89.03%
(SD 8.49%), and 84.21% (SD 0%); mean AUCs of 94.47% (SD
7.32%), 88.45% (SD 8.33%), and 88.61% (SD 5.9%); mean
sensitivities of 93.8% (SD 6.27%), 88.41% (SD 10.24%), and
93% (SD 0%); and mean specificities of 94.2% (SD 6.63%),
85.89% (SD 14.66%), and 95% (SD 0%) for radiographic,
molecular/biochemical, and physiological biomarkers,
respectively. Meanwhile, AI performance across various
reference standards show mean accuracies of (SD 7.3%), 93.16%
(SD 6.44%), 88.98% (SD 9.77%); mean AUCs of 90.95% (SD
7.58%), 94.89% (SD 5.18%), 92.61% (SD 6.01%); mean
sensitivities of 91.76% (SD 7.02%), 93.73% (SD 6.67%),
91.34% (SD 7.71%); and mean specificities of 86.56% (SD
12.8%), 93.69% (SD 8.45%), 92.7% (SD 6.54%) for
bacteriological, human reader, and combined bacteriological
and human reader reference standards, respectively.

Risk-of-Bias Assessment Result
Figure 7 presents the QUADAS-2 outcomes across all included
studies. Among the assessed studies, 18 (11.8%)
[32,46-48,57,70,95,97,111,124,127,136,140,144,153,169,170,178]
were flagged for a high risk of bias, with 1 (0.7%) study [141]
marked as having an unclear risk concerning patient selection,
largely attributable to incomplete or absent information in the
data selection process. Moreover, 4 (2.6%) studies
[41,101,108,174] were identified as having a high risk regarding
the index test, attributed to the absence of crucial details on
model architecture and parameters. Additionally, 3 (2%) studies
[57,156,158] were classified as having a high risk and 8 (5.3%)
studies [32,63,64,97,98,111,140,161] as having an unclear risk
concerning reference standards, due to incomplete or missing
information regarding the reference standards used. Concerning
flow and timing, 2 (1.3%) studies [88,95] were deemed to have
a high risk of bias, while 8 (5.3%) studies
[53,65,67,87,102,141,156,179] were assigned an unclear risk,
primarily due to unclear or absent information regarding the
time interval and intervention provided in those studies.

Figure 7. Summary of QUADAS-2 results of the included studies. QUADAS-2: Quality Assessment of Diagnostic Accuracy Studies version 2.

The majority of the included studies exhibited a low level of
concern about applicability. Only 3 (2%) studies [48,88,144]

were identified with a high risk and 1 (0.7%) study [141] with
an unclear risk in terms of patient selection. Additionally, 3
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(2%) studies [41,108,151] were flagged with a high risk
concerning the index test, while 1 (0.7%) study [158] showed
a high risk, and 8 (5.3%) studies [32,63,64,97,98,111,140,161]
had an unclear risk concerning reference standards. For
comprehensive QUADAS-2 results, please refer to Multimedia
Appendix 5.

Discussion

Principal Findings
This review study examined the diagnostic performance of
various AI-based algorithms, including both ML and DL, for
TB detection across different techniques, data modalities, and
reference standards used in the included studies. Approximately
84.9% (n=129) of the included studies used radiographic data
types, particularly CXRs. Notably, the SZ and MC datasets
emerged as the most frequently used, with 51 and 46 studies,
respectively, making use of them. However, it is noteworthy
that the availability of data in SZ and MC, totaling 800 images,
is relatively limited, posing challenges, especially for studies
using DL methods where larger datasets are often required for
optimal performance. Consequently, numerous techniques have
been introduced to augment data quantity [185,186], including
conventional methods, as well as DL-based augmentation
techniques.

Few recent studies have used other data types, such as exhaled
breath particles [146,150] and cough sounds [63,64,175].
Although not recommended as a standard tool for TB detection,
results from these noninvasive approaches could be a
supplement to the standard TB detection tool using CXRs.
Hence, further studies that analyze CXRs together with other
data types are encouraged.

Concerning modality, the majority of the included studies
adopted a single modality (n=141, 92.8%) rather than using a
multimodal approach (n=11, 7.2%). Studies using a single
modality tended to exhibit higher median values and narrower
distribution ranges compared to those using a multimodal
approach (Figure 5, right). This suggests that the single-modality
approach may outperform the multimodal approach. However,
more outliers were observed in all performance metrics for the
single modality compared to the multimodal approach.
Additionally, these outcomes were not obtained under identical
scenario settings. When applied under similar scenario settings,
the multimodal approach has demonstrated the potential to
enhance performance results compared to the single modality
[9,187]. This is supported by findings from several included
studies that have directly compared single-modality and
multimodal approaches [79,86,95].

DL emerged as a cornerstone in the majority of the included
studies (n=122, 80.3%), with CNNs taking the forefront. Among
these, architectures such as VGG-16 [188], ResNet-50
[189,190], and DenseNet-121 [191] have gained notable traction.
More recent DL architectures, including EfficientNets [192],
Vision Transformer (ViT) [193], and ConvNeXts [194], have
gained increasing attention. These emerging models, with more
efficient architectures that require fewer computational

resources, show potential for application in medical image
processing, particularly in TB detection tasks.

Some of the included studies explored various explainable AI
(XAI) methods to bolster the interpretability and trustworthiness
of their AI models’ outcomes. Originating from the need to
strike a balance between interpretability and accuracy in ML
and DL models [195], XAI has garnered considerable attention.
Among the XAI techniques used in the included studies were
gradient-weighted class activation mapping (Grad-CAM), local
interpretable model-agnostic explanation (LIME), and Shapley
additive explanations (SHAP).

TL is a powerful technique that capitalizes on knowledge
acquired from a source dataset and adapts it to a target domain,
relaxing the assumption that training data must be independent
and identically distributed with test data [196]. TL proves
especially beneficial in scenarios with a limited data volume.
Indeed, TL has been extensively used in the studies
encompassed in this systematic review (n=89, 58.6%),
particularly those using DL methods. Notably, as illustrated in
Figure 5 (left), investigations integrating TL tend to exhibit a
higher median accuracy compared to counterparts. Additionally,
they showcase a narrower distribution range, suggesting that
TL-based approaches consistently deliver superior and more
consistent results.

The majority of the included studies (n=143, 94.1%) focused
primarily on the development of AI models for TB detection.
Only 8 studies [44,73,92,106,111,137,153,176] progressed
beyond model development to build prototypes or systems aimed
at supporting real-world applications. Among these, 3 studies
implemented their proposed models in real-world settings: eRx,
a mobile health system for TB diagnosis deployed in Lima, Peru
[111]; the multistream integration–pulmonary tuberculosis
diagnosis model (MSI-PTDM), multistream integration for a
TB diagnosis model implemented in China [176]; and
AIChest4All, an automated CXR-screening system used in
Thailand [44]. We excluded studies evaluating commercial TB
detection tools, such as Lunit INSIGHT, CAD4TB, and qXR,
as they typically do not provide detailed discussions of the
underlying AI models. For further insights into commercial TB
detection tools, interested readers are referred to the narrative
review by Singh et al [17].

In terms of overall performance metrics, the AI methods
displayed remarkable achievements. Further analysis based on
the AI methods used in the included studies revealed interesting
insights. As illustrated in Figure 6 (left), DL exhibits higher
accuracy with less variation compared to ML and ML/DL.
However, regarding the AUC, sensitivity, and specificity, studies
integrating ML/DL tend to yield superior results, followed by
DL and then ML. This suggests that the fusion of ML and DL
methods may enhance model performance, albeit few studies
have explored this avenue.

We also examined the performance results concerning the types
of data used. Radiographic data-type studies showcased superior
median scores across all performance metrics (Figure 6, middle).
Notably, they demonstrated a higher level of consistency,
evidenced by their shorter IQRs in all performance metrics.
Regarding the reference standards used in the included studies,
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studies that used the human reader exceled compared to those
that used bacteriological and both reference standards, as
indicated by the higher median and mean scores on all
performance metrics in Figure 6 (right). Despite accuracy, the
IQRs were also shorter for the AUC, sensitivity, and specificity.
This finding might be rooted in the large number of included
studies that used DL methods on radiographic data types with
human reader reference standards.

Finally, it is worth noting that the majority of the included
studies overlooked the evaluation of proposed solutions
regarding the domain-shift problem. Remarkably, only 1 study
[126] addressed domain-shift analysis in the context of TB
detection, as highlighted by Hansun et al [197]. Although our
review confirmed the high performance of AI-based methods
across various data types in TB detection tasks, these evaluations
were predominantly conducted on in-domain datasets. In other
words, the datasets used for validation and testing shared the
same distribution and characteristics as the training data.
However, many AI methods, particularly DL, struggle when
applied to real-world settings [198]. This discrepancy often
arises due to differences in data distribution between the training
data and real-world datasets. As such, it is imperative to broaden
our focus to include not only in-domain evaluations but also
domain-shift analysis in future research endeavors.

Limitations and Strengths
This systematic review has several limitations that warrant
acknowledgment. First, our search was limited to the literature
published in English from 3 primary academic databases:
Scopus, PubMed, and ACM Digital Library. Although these
sources are comprehensive, it is possible that relevant studies
might exist in other databases, potentially leading to a partial
representation of the literature.

Second, we did not conduct further investigations into aspects
with high or unclear risks from the bias assessment. Given the
prevalence of radiographic datasets across most included studies,
we assumed uniformity across these aspects. However, this
assumption may overlook potential variations that could impact
the overall assessment.

Lastly, in this review study, we opted not to perform a
meta-analysis. Although a meta-analysis could provide valuable
insights, the diverse nature of the included studies made it
challenging to ensure meaningful comparability across studies,
potentially affecting the validity and reliability of the
synthesized findings. It is also important to note that the
variations in data distribution and experimental settings across
studies may lead to different results. Although the descriptive
statistics reported in this study have been grouped based on

several approaches, they should be seen as general performance
results of AI for TB detection.

Despite the aforementioned limitations, our review study is
among the few to systematically review the evidence available
in the literature regarding the efficacy of AI-based methods for
TB detection. Although most review studies focus only on a
specific biomarker type for TB detection, we performed a more
comprehensive review of AI-based methods across diverse
biomarker types. We further assessed the AI methods’
performance based on several dominant approaches used in the
included studies, including TL, multimodalities, reference
standards, and ML/DL fusion methods for TB detection, which
have never been explored before.

Key Takeaways
AI-based approaches, particularly DL, have been extensively
used for TB detection with high-accuracy results. A
single-modality approach with chest radiographs has been
dominantly used. Further studies that analyze chest radiographs
together with other data types (multimodality) are encouraged.
AI models trained and tested on radiographic data tend to
achieve higher performance compared to other data types.
Emerging DL models, such as EfficientNets, ViT, and
ConvNeXts, show the potential to enhance TB detection results.
TL has shown a great advantage in handling a limited data
volume and consistently delivering superior results. Most of
the included studies evaluated their proposed solutions using
in-domain datasets. Future research endeavors should prioritize
conducting domain-shift analyses to better simulate real-world
scenarios in TB detection.

Conclusion
This systematic review underscores the considerable promise
of AI-based approaches in TB detection. Among the array of
AI methods, DL emerges as the predominant choice. This
preference for DL is attributed to its consistently robust
performance, likely bolstered by the prevalence of studies using
radiographic data. A notable observation across many studies
is the use of relatively small datasets. Despite achieving
commendable results, the potential of DL models could be
further enhanced with larger and more diverse datasets.

Finally, although AI models demonstrate impressive
performance on in-domain datasets, there is a notable gap in
evaluating their robustness to domain shifts. Future research
endeavors should prioritize conducting domain-shift analyses
to better simulate real-world scenarios in TB detection. This
approach would provide invaluable insights into the
generalizability and applicability of AI-based methods beyond
controlled settings.
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