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Abstract

Background: Gastrointestinal bleeding is a serious adverse event of coronary artery bypass grafting and lacks tailored risk
assessment tools for personalized prevention.

Objective: This study aims to develop and validate predictive models to assess the risk of gastrointestinal bleeding after coronary
artery bypass grafting (GIBCG) and to guide personalized prevention.

Methods: Participants were recruited from 4 medical centers, including a prospective cohort and the Medical Information Mart
for Intensive Care IV (MIMIC-IV) database. From an initial cohort of 18,938 patients, 16,440 were included in the final analysis
after applying the exclusion criteria. Thirty combinations of machine learning algorithms were compared, and the optimal model
was selected based on integrated performance metrics, including the area under the receiver operating characteristic curve
(AUROC) and the Brier score. This model was then developed into a web-based risk prediction calculator. The Shapley Additive
Explanations method was used to provide both global and local explanations for the predictions.

Results: The model was developed using data from 3 centers and a prospective cohort (n=13,399) and validated on the Drum
Tower cohort (n=2745) and the MIMIC cohort (n=296). The optimal model, based on 15 easily accessible admission features,
demonstrated an AUROC of 0.8482 (95% CI 0.8328-0.8618) in the derivation cohort. In external validation, the AUROC was
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0.8513 (95% CI 0.8221-0.8782) for the Drum Tower cohort and 0.7811 (95% CI 0.7275-0.8343) for the MIMIC cohort. The
analysis indicated that high-risk patients identified by the model had a significantly increased mortality risk (odds ratio 2.98, 95%
CI 1.784-4.978; P<.001). For these high-risk populations, preoperative use of proton pump inhibitors was an independent protective
factor against the occurrence of GIBCG. By contrast, dual antiplatelet therapy and oral anticoagulants were identified as independent

risk factors. However, in low-risk populations, the use of proton pump inhibitors (χ2
1=0.13, P=.72), dual antiplatelet therapy

(χ2
1=0.38, P=.54), and oral anticoagulants (χ2

1=0.15, P=.69) were not significantly associated with the occurrence of GIBCG.

Conclusions: Our machine learning model accurately identified patients at high risk of GIBCG, who had a poor prognosis. This
approach can aid in early risk stratification and personalized prevention.

Trial Registration: Chinese Clinical Registry Center ChiCTR2400086050; http://www.chictr.org.cn/showproj.html?proj=226129

(J Med Internet Res 2025;27:e68509) doi: 10.2196/68509
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Introduction

Approximately 1.5 million people worldwide undergo cardiac
surgery each year, with coronary artery bypass grafting (CABG)
being the most common procedure [1,2]. The incidence of
gastrointestinal bleeding (GIB) after CABG (GIBCG) ranges
from approximately 0.39% to 5.5% [3-8], increasing between
5% and >10% in patients treated with dual antiplatelet agents
[9]. In the study by Yang et al [10], the observed incidence rate
reached 22.4%. However, once GIBCG occurs, the mortality
rate rises significantly, ranging from 8.8% to 38.0% [3-8], which
is notably higher than that of surgical patients without GIB.

GIBCG has delayed and insidious characteristics that make
early recognition difficult [4-6]. These patients often experience
adverse events such as respiratory or renal failure and cardiac
insufficiency, which can mask its clinical signs. Postoperative
sedation may also obscure typical abdominal symptoms [6].
Following a GIBCG episode, continued administration of
antiplatelet agents can exacerbate bleeding, whereas
discontinuing antiplatelet therapy is associated with a higher
risk of cardiovascular events and increased mortality rates [11].
Therefore, preventing and diagnosing GIBCG early are essential
in clinical practice.

The PRECISE-DAPT (Predicting bleeding complications in
patients undergoing stent implantation and subsequent dual
antiplatelet therapy) score is one of the most commonly used
clinical tools for predicting bleeding risk in patients with acute
coronary syndrome. It assesses the risk of bleeding within 12
months following percutaneous coronary intervention [12].
Unlike percutaneous coronary intervention, CABG may cause
GIB through different mechanisms, such as the effects of
extracorporeal circulation and stress [5,13]. However, the
applicability of these scores in patients undergoing CABG
remains unclear.

Machine learning (ML), a subset of artificial intelligence,
effectively identifies nonlinear relationships, deciphers intricate
interactions, and manages multicollinearity among predictor
variables [14-16]. ML has been widely applied in medicine,
leveraging large volumes of patient data to build risk models.
These models can predict disease onset, assess condition
severity, and evaluate disease prognosis [17-19]. ML

outperforms traditional scores in predicting GIB risk after
antithrombotic therapy [20]. However, GIB risk prediction after
cardiac surgery remains understudied. To date, only 1 study—a
single-center, small-sample, traditional risk prediction model
using intraoperative and postoperative clinical features—has
reported on GIBCG risk prediction, but it does not allow for
preoperative risk assessment [10]. In this study, we aimed to
develop and evaluate ML-driven risk prediction models using
preoperative clinical features to identify individuals at a high
risk of GIBCG, thereby enabling proactive preventive measures.

Methods

Ethical Considerations
The Medical Ethics Committee of Beijing Anzhen Hospital,
affiliated with Capital Medical University, approved the study
protocol (approval number KS2023020). This study is
retrospectively registered in the Chinese Clinical Trial Registry
(ChiCTR2400086050), which includes GIB as the primary
outcome along with other gastrointestinal complications. GIB
was the main focus of this study due to its high morbidity and
lethality. Informed consent was obtained from all participants.
DJ obtained access to and download permission for the Medical
Information Mart for Intensive Care IV (MIMIC-IV) database
(ID: 59888302). All data have undergone deidentification
processing to ensure anonymity.

Patients and Study Design
The study included patients from 4 hospitals in China, with the
inclusion criteria being CABG during hospitalization, age over
18 years, and availability of complete key information. Data
were also obtained from the American Critical Care database,
the MIMIC-IV, which met the same inclusion criteria [21].
Patients hospitalized at Beijing Anzhen Hospital between
January 2018 and May 2023, Beijing Luhe Hospital between
July 2019 and May 2023, and Beijing Chaoyang Hospital
between May 2022 and April 2024 were included in the
derivation cohort. Additionally, 3466 patients prospectively
recruited at Beijing Anzhen Hospital between May 2023 and
April 2024 were included as a prospective cohort within the
same derivation cohort. Patients hospitalized at Nanjing Drum
Tower Hospital between October 2010 and May 2023, along
with data from MIMIC-IV, were included in the external
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validation cohort. The exclusion criteria were as follows:
patients diagnosed preoperatively with GIB and those whose
bleeding cause could not be identified due to comorbidities such
as severe liver disease or gastrointestinal malignancy. Figure
S1 in Multimedia Appendix 1 details the patient selection
process for the derivation and external validation cohorts.

Sample Size Calculation
When developing prediction models, a common practice for
determining the required sample size is to ensure at least 10
events per candidate predictor parameter. Additionally, we
followed the 4-step procedure proposed by Riley et al [22] to
calculate the required sample size. The calculation process,
formulas, and results are presented in Table S1 in Multimedia
Appendix 1.

Definition of Outcome
The primary outcome was the occurrence of GIB after CABG,
defined as (1) hematemesis (including bright red blood or
coffee-ground emesis), melena, hematochezia, or positive occult
blood tests in either gastric fluid or stool; and (2) bleeding foci
identified during endoscopic examination [23-25]. The
secondary outcome was the in-hospital mortality rate.

Predictive Features
Admission variables were used as predictive features. Table S2
in Multimedia Appendix 1 provides the definitions of each
feature. Data extraction for patients undergoing CABG and the
diagnosis of comorbidities were based on International
Classification of Diseases 9th/10th Revision (ICD-9/10) disease
codes (Table S3 in Multimedia Appendix 1).

Statistical Analysis
Data analysis was performed using SPSS Statistical Software
version 26.0(IBM Corp.). Normally distributed continuous
variables are presented as means with SDs, while skewed
continuous variables are presented as medians with IQRs. For
statistical analysis, the independent samples t test was used to
compare normally distributed continuous variables, and the
Mann-Whitney U test was used for skewed distributions.
Categorical variables are presented as numbers with percentages
and were compared using the chi-square or Fisher exact test.
Significant variables from the univariate analysis were selected
for multivariate unconditional logistic regression. Differences
were considered statistically significant at P<.05. Missing values
were imputed using multiple imputation methods in R version
4.1.0 9 (R Foundation). Subsequent feature screening and model
construction were performed using Python version 3.7.0 (Python
Foundation). Table S4 in Multimedia Appendix 1 presents the
data types and missing values for each feature.

Feature Selection
Figure 1 presents the complete study flowchart. We employed
4 distinct feature selection methods to identify candidate features
for model development: least absolute shrinkage and selection
operator (LASSO), k-best feature selection (K-Best), random
forest recursive feature elimination (RFE), and the mutual
information algorithm [26]. A fifth method was a combined
approach that selected features appearing in at least three of the
four feature selection methods.
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Figure 1. Flowchart of the study. The study process is summarized as follows: data were collected from multiple centers, patient admission features
were extracted, and the study cohort was defined. A derivation cohort was formed from 3 centers and a prospective cohort, which were used for feature
screening and model construction. The optimal model was selected using multiple evaluation metrics and externally validated with the Drum Tower
and MIMIC cohorts. Finally, the model was developed into a user-friendly web page to facilitate clinical use and guide treatment decisions. Abbreviations:
COM: combined method, including features appearing more than three times in the first four feature selection methods; K-Best: k-best feature selection;
LASSO: least absolute shrinkage and selection operator; LR: logistic regression; MI: mutual information; MIMIC IV: medical information mart for
intensive care IV; MLP: multilayer perceptron; NB: naive Bayes; RF: random forest; RFE: recursive feature elimination; ROC curve: receiver operating
characteristic curve; SHAP: Shapley additive explanations; SVM: support vector machine; XGB: XGBoost (extreme gradient boosting).

Model Development and Validation
Based on feature engineering, we applied 6 supervised ML
algorithms: multilayer perceptron, naive Bayes, random forest,
Extreme Gradient Boosting (XGBoost; also called XGB),
logistic regression, and support vector machines. By combining
5 feature selection methods with these 6 classifiers, we built 30
models (5 × 6 = 30) and optimized hyperparameters for each
model using a 5-fold grid search cross-validation on the
derivation cohort. Grid search systematically explores all
possible combinations of hyperparameters, while 5-fold
cross-validation evaluates each combination’s performance
across different validation subsets. The optimal hyperparameter
combination for each model was selected based on the highest
performance across cross-validation folds. The hyperparameter
settings, ranges, and rationale for each algorithm are detailed
in Table S5 in Multimedia Appendix 1. The final model
selection was based on a comprehensive evaluation of multiple
performance metrics, including the average and SD of both the
area under the receiver operating characteristic curve (AUROC)
and the Brier score [27]. AUROC measures the model’s ability
to distinguish between different classes, which is particularly

important in imbalanced data sets. A higher AUROC value
indicates better class discrimination. The Brier score, by
contrast, assesses both the accuracy and calibration of predicted
probabilities by quantifying the difference between predicted
probabilities and actual outcomes. Using these metrics provides
a well-rounded evaluation of model performance in terms of
both discriminative power and predictive accuracy. The average
and SD of AUROC and Brier score were calculated based on
all validation results from 5-fold, 10-time cross-validation. The
ideal model performance is characterized by an average AUROC
close to 1, a Brier score close to 0, and low SDs for both metrics.
To quantify overall model performance, we first normalized the
average AUROC. Next, we normalized the average Brier score
and the SDs of both AUROC and Brier score by subtracting
them from 1. The comprehensive model score was then obtained
by averaging these 4 values. Based on this score, we selected
the optimal combination of the feature selection method and
ML model for further evaluation in external validation.

Model Evaluation
In the external validation cohort, we further assessed the
performance of the final prediction models using AUROC,
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calibration plots, and decision curve analysis (DCA). Model
discrimination was evaluated using AUROC, and we compared
the discriminative performance of the optimal ML model with
PRECISE-DAPT scores. Calibration was demonstrated through
calibration plots and quantified using the Brier score, while
clinical utility was assessed using DCA [28]. We categorized
bleeding severity, defining severe GIB as the presence of marked
symptoms such as hematemesis, melena, or hematochezia, or
the identification of bleeding foci during endoscopic
examination. Patients with positive occult blood tests in gastric
fluid or stool were classified as having mild bleeding.
Additionally, we assessed the model’s ability to predict severe
bleeding within each study cohort.

Model Interpretations
ML modeling often operates in a “black box” environment,
where the complexity and multidimensionality of algorithms
make it difficult to clearly elucidate the internal mechanisms
driving accurate predictions for specific patient groups. To
enhance model interpretability, we used the Shapley Additive
Explanations (SHAP) algorithm [29,30]. SHAP is a game
theory-based model explanation method that provides consistent
and locally precise attribution values—known as SHAP
values—for each feature in the model. This approach highlights
the significance of individual features and explains the model’s
decision-making process. Higher SHAP values indicate a greater
likelihood of GIBCG.

Clinical Application
We determined the model’s optimal cutoff values by identifying
the maximum Youden index (sensitivity + specificity – 1) in
the derivation cohort. Using these cutoff values, patients were
classified into high- and low-risk groups. Subgroup analyses
were conducted based on preoperative medication use across
different risk groups. Finally, we developed a web-based
interface integrating the optimal ML model, which utilizes
questionnaire-guided responses for risk assessment.

Results

Patient Characteristics
The calculated sample size was 5667. However, to meet the
requirements of ML training, we used a data set that far
exceeded this minimum to ensure optimal model performance.
In total, we included 16,440 patients, with 13,399 in the
derivation cohort and 3041 in the external validation cohort.
Baseline characteristics for these groups are presented in Table
1. In the derivation cohort (N=13,399), 803 patients (5.99%)
developed GIBCG. The external validation cohort comprised
data from Nanjing Drum Tower Hospital and MIMIC,
incorporating both Chinese and American centers. The Drum
Tower data set (n=2745) was designated as external validation
cohort 1, in which 179 patients (6.52%) developed GIBCG. The
MIMIC data set (n=296) was designated as external validation
cohort 2, with 176 patients (59.5%) developing GIBCG.
Baseline characteristics stratified by GIBCG occurrence are
compared in Tables S6-S8 in Multimedia Appendix 1.
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Table 1. Baseline characteristics of the derivation and external validation cohorts.

External validation cohortDerivation cohortDemographic variables

MIMICa (n=296)Drum Tower (n=2745)Multicenter (n=13,399)

74 (15)70 (14)63 (11)Age, median (IQR), years

Sex, n (%)

198 (66.89)1921 (69.98)10,108 (75.44)Male

98 (33.11)824 (30.02)3291 (24.56)Female

30.09 (7.31)24.4 (4.3)25.59 (4.09)BMI, median (IQR)

30 (10.14)29 (1.06)102 (0.76)Gastrointestinal bleeding history, n (%)

28 (9.46)262 (9.54)1578 (11.78)After percutaneous coronary intervention, n (%)

Chronic comorbidities, n (%)

122 (41.22)319 (11.62)1704 (12.72)Anemia

92 (31.08)17 (0.62)147 (1.10)Coagulation disorders

131 (44.26)1691 (61.60)6238 (46.56)Hypertension

185 (62.50)258 (9.40)618 (4.61)Atrial fibrillation

100 (33.78)832 (30.31)5314 (39.66)Diabetes

146 (49.32)1114 (40.58)5114 (38.17)Heart failure

53 (17.91)484 (17.63)2045 (15.26)Cerebral vascular disease

71 (23.99)196 (7.14)347 (2.59)Peripheral vascular disease

113 (38.18)133 (4.85)614 (4.58)Chronic kidney disease

11 (3.72)37 (1.35)209 (1.56)Gastrointestinal ulcer

10 (3.38)85 (3.10)155 (1.16)Gastritis

201 (67.91)1689 (61.53)8413 (62.79)Hyperlipidemia

107 (36.15)433 (15.77)2087 (15.58)Valvular disease

Admission examination, median (IQR)

11.35 (7.68)6.3 (2.4)6.89 (2.83)White blood cell count (×109/L)

3.25 (0.79)4.38 (0.71)4.41 (0.77)Red blood cell count (×1012/L)

176.5 (136)191 (73.5)207 (79)Platelet count (×109/L)

98 (23)134 (22)136 (25)Hemoglobin (g/L)

0.295 (0.063)0.398 (0.06)0.396 (0.069)Hematocrit (proportion of 1.0)

0.4 (0.56)0.36 (0.32)0.33 (0.3)Alanine aminotransferase (µkat/L)

0.62 (0.99)0.37 (0.24)0.32 (0.17)Aspartate aminotransferase (µkat/L)

10.26 (13.25)10.8 (6.9)11.01 (6.4)Bilirubin total (µmol/L)

33.07 (6.09)39.6 (4)42.7 (4.8)Albumin (g/L)

9.64 (8.93)6.1 (2.5)5.77 (2.28)Urea (mmol/L)

106.08 (79.56)71 (25.55)75 (21.7)Creatinine (μmol/L)

14.4 (4.58)11.5 (1.3)11.4 (1.1)Prothrombin time (seconds)

31.8 (12.8)27.8 (4.1)31 (4.4)Activated partial thromboplastin time (seconds)

1.3 (0.5)1 (0.12)1.01 (0.09)International normalized ratio

5.06 (3.01)3.34 (1.45)2.92 (0.77)Lactate dehydrogenase (µkat/L)

Admission examination

Ejection fraction, n (%)

109 (36.82)1572 (57.27)10,611 (79.19)≥55%
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External validation cohortDerivation cohortDemographic variables

MIMICa (n=296)Drum Tower (n=2745)Multicenter (n=13,399)

76 (25.68)579 (21.09)1772 (13.22)45%-55%

72 (24.32)543 (19.78)968 (7.22)30%-44%

39 (13.18)51 (1.86)48 (0.36)<30%

40.48 (22.46)14.53 (10.78)12.3 (11.36)PRECISE-DAPTb score, median (IQR)

22 (7.43)69 (2.51)123 (0.92)In-hospital mortality, n (%)

aMIMIC: Medical Information Mart for Intensive Care.
bPRECISE-DAPT: predicting bleeding complications in patients undergoing stent implantation and subsequent dual antiplatelet therapy.

Predictive Features
Five feature selection methods—LASSO, K-Best, RFE, mutual
information algorithm, and a combined approach—were used
to optimize the feature set (Table S9 in Multimedia Appendix
1). The features identified through these methods were
incorporated as predictors of GIBCG and subsequently used in
the ML model for further evaluation.

Model Performance
Using grid search and cross-validation, we identified the optimal
hyperparameters for each model configuration (Table S10 in
Multimedia Appendix 1). Table S11 presents the average
AUROC and its 95% CI for each model in the training set,
constructed from 4 folds of the 5-fold cross-validation in the
derivation cohort. Table S12 displays the AUROC for the
internal validation set, which consists of the remaining fold.

Similarly, Tables S13 and S14 report the mean Brier score and
its 95% CI for the training and internal validation sets,
respectively. We constructed 6 models for each of the 5 feature
selection methods, yielding 30 (5×6) models. Figure 2A presents
a heatmap of comprehensive scores, ranging from 0.1789 to
0.9938. Vertically, models developed using the LASSO method
achieved an average score of 0.8709, outperforming those built
with other feature selection techniques. Horizontally, XGBoost
demonstrated superior performance across feature selection
methods, with an average score of 0.9128. Notably, the
LASSO-XGBoost combination attained the highest score of
0.9938, making it the top-performing model. Figure 2B
illustrates the AUROC of models following LASSO feature
selection, with XGBoost achieving the highest AUROC of
0.8482 (95% CI 0.8328-0.8618, bootstrap), outperforming all
other models.

Figure 2. Performance of machine learning models. (A) Heatmaps illustrating the predictive performance (model score) of different combinations of
feature selection methods (rows) and classification algorithms (columns). (B) Receiver operating characteristic curves of various models following
LASSO feature selection. Abbreviations: COM: combined method; K-Best: k-best feature selection; LASSO: least absolute shrinkage and selection
operator; LR: logistic regression; MI: mutual information; MLP: multilayer perceptron; NB: naive Bayes; PRECISE: “predicting bleeding complications
in patients undergoing stent implantation and subsequent dual antiplatelet therapy” score; RF: random forest; RFE: recursive feature elimination; SVM:
support vector machine; XGB: XGBoost (extreme gradient boosting).

Model Evaluation
The final prediction model was evaluated using 2 independent
external cohorts from China and the United States. Figure 3A

presents calibration plots for the XGBoost model across the
derivation cohort and both external validation cohorts. Given
the higher positive rate in the MIMIC cohort, we applied Platt
scaling to calibrate predicted probabilities for this data set. In
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the derivation cohort, the XGBoost model achieved a Brier
score of 0.0446 (95% CI 0.0419-0.0474). The Brier score was
0.0489 (95% CI 0.0431-0.0549) in the Drum Tower validation
cohort and 0.2044 (95% CI 0.1787-0.2322) in the MIMIC
validation cohort. These results indicate that our model
demonstrates the highest calibration in the 2 Chinese cohorts
while maintaining satisfactory calibration in the American
cohort. Figure 3B compares the AUROC of the XGBoost model
and the PRECISE-DAPT score within the Drum Tower

validation cohort. The AUROC for XGBoost was 0.8513 (95%
CI 0.8221-0.8782), exceeding that of the PRECISE-DAPT score
(0.7427, 95% CI 0.7028-0.7836). Similarly, in the MIMIC
validation cohort (dashed curves in Figure 3B), XGBoost
achieved an AUROC of 0.7811 (95% CI 0.7275-0.8343),
outperforming the PRECISE-DAPT score (0.6460, 95% CI
0.5863-0.7123). Figure 3C presents a DCA integrating both
external validation cohorts, showing that the net benefit of
XGBoost surpasses that of the PRECISE-DAPT score.

Figure 3. Evaluation of the optimal model and its interpretability. (A) Calibration plots of XGBoost (Extreme Gradient Boosting) in the derivation
cohort and 2 independent external validation cohorts. The Brier score is reported in the lower-right legend (a smaller value indicates better calibration).
(B) Comparison of the area under the receiver operating characteristic curve (AUROC) for XGBoost and the PRECISE-DAPT (predicting bleeding
complications in patients undergoing stent implantation and subsequent dual antiplatelet therapy) score in the Drum Tower and MIMIC (Medical
Information Mart for Intensive Care) validation cohorts. (C) Comparison of clinical decision curves for XGBoost and the PRECISE-DAPT score in the
combined external validation cohort. (D) Bar chart of the mean absolute Shapley Additive Explanations (SHAP) value for each predictor.(E) SHAP
summary plot. The SHAP value along the x axis serves as a standardized measure of feature influence within the model. Each row of critical features
illustrates the contributions of all patients to the outcome, with dots in different colors: red representing high-risk values and blue representing low-risk
values.

The proportion of patients with severe bleeding among those
with GIBCG is presented for each study cohort (Figure S2 in
Multimedia Appendix 1). The model demonstrated excellent
discriminative ability for severe GIB, with AUROCs of 0.8912
(95% CI 0.8626-0.9196) in the derivation cohort, 0.8817 (95%
CI 0.8249-0.9296) in the Drum Tower validation cohort, and
0.8388 (95% CI 0.7749-0.8931) in the MIMIC validation cohort
(Figure S3 in Multimedia Appendix 1).

The MIMIC cohort consists of critically ill patients; therefore,
we assessed disease severity using intensive care unit stay
duration, Sequential Organ Failure Assessment (SOFA) score
on the first day, and the Charlson Comorbidity Index for further
subgroup analysis (Figure S4 in Multimedia Appendix 1). In
the figure, the red line represents the intensive care unit stay
duration cutoff, with the model’s AUROC calculated for patients

below this threshold. The blue and green lines indicate the SOFA
score and the Charlson Comorbidity Index, respectively. Line
charts illustrate AUROC changes across different cutoff values
for these 3 indicators. The results show that as disease severity
increases (ie, with higher cutoff values), the AUROC gradually
decreases, suggesting that the model performs better in
predicting less severe cases than more severe ones.

Model Interpretability Using SHAP Values
Figure 3D presents a bar chart displaying the average absolute
SHAP values for each predictive feature, with higher SHAP
values indicating greater feature influence. Figure 3E provides
a SHAP summary plot illustrating how each predictive feature
impacts the XGBoost model’s predictions. A decrease in ejection
fraction, international normalized ratio (INR), platelet count,
albumin, and hemoglobin levels, and the presence of heart
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failure, advanced age, chronic kidney disease, anemia,
cerebrovascular disease, valvular disease, elevated white blood
cell count, increased lactate dehydrogenase levels, coagulation
disorders, and gastrointestinal ulcer were associated with a
higher predicted probability of GIBCG.

Prognostic Implications
We evaluated the prognostic implications across all 16,440
hospitalized patients from the derivation and external validation
cohorts. In the derivation cohort, an optimal cutoff value of
0.0592 was identified based on the maximum Youden index to
differentiate between high- and low-risk populations, and the
same threshold was applied to the external validation cohort.
Univariate and multivariate analyses of risk factors for mortality
were conducted across all cohorts (Table S15 in Multimedia
Appendix 1). The findings indicate that the model-identified
risk levels (high risk vs low risk) serve as an independent risk
factor for in-hospital mortality (odds ratio [OR] 2.98, 95% CI
1.784-4.978; P<.001). The model’s risk probability output was
also an independent risk factor for in-hospital mortality (OR
1.017, 95% CI 1.004-1.031; P=.009). Compared with the
low-risk population, the high-risk population exhibited
significantly higher mortality rates in the derivation cohort

(106/4534, 2.34% versus 17/8865, 0.19%; χ2
1=151.91, P<.001),

Drum Tower validation cohort (60/1354, 4.43% versus 9/1391,

0.65%; χ2
1=40.09, P<.001), and MIMIC validation cohort

(22/278, 7.91% versus 0/18, 0%; χ2
1=0.60, P=.44; Figure S5

in Multimedia Appendix 1). Although the PRECISE-DAPT
score is an independent risk factor for in-hospital mortality
(Table S15 in Multimedia Appendix 1), Figure S6 in Multimedia
Appendix 1 presents the receiver operating characteristic curves
for predicting in-hospital mortality using both our model and
the PRECISE-DAPT score. The AUROC for the risk probability
predicted by our model was 0.8642 (95% CI 0.8384-0.8860),
compared with 0.7591 (95% CI 0.7266-0.7939) for the
PRECISE-DAPT score, demonstrating the superior prognostic
performance of our model.

Guiding Personalized Medicine
Given the substantial variations in prognosis across different
risk populations, we conducted a subgroup analysis comparing
preoperative medications between CABG patients with and
without GIB to explore potential intervention strategies. In all
cohorts, preoperative use of proton pump inhibitors (PPIs;

χ2
1=53.45, P<.001), dual antiplatelet therapy (DAPT; χ2

1=16.53,

P<.001), and oral anticoagulants (OACs; χ2
1=29.87, P<.001)

was significantly associated with the occurrence of GIBCG.

However, in the low-risk population, PPIs (χ2
1=0.13, P=.72),

DAPT (χ2
1=0.38, P=.54), and OACs (χ2

1=0.15, P=.69) were
not significantly associated (Table S16 in Multimedia Appendix
1). In the high-risk population, univariate analysis identified

preoperative use of PPIs and single antiplatelet therapy (SAPT)
as protective factors against GIBCG, whereas DAPT and OACs
were associated with an increased risk. Furthermore, multivariate
analysis confirmed that PPIs, DAPT, and OACs were
independent correlates of GIBCG occurrence (Table S17 in
Multimedia Appendix 1)

These findings were further validated in the Drum Tower and
MIMIC validation cohorts (Table S16 in Multimedia Appendix
1), confirming the universality and robustness of our cutoff
value. The analysis of GIBCG risk factors in the Drum Tower
validation cohort aligned with those in the derivation cohort,
particularly regarding preoperative medication (Table S18 in
Multimedia Appendix 1). Although the MIMIC validation
cohort, derived from the Critical Care Database, differed from
the other 2 cohorts, its analysis yielded largely consistent results.
Specifically, preoperative use of PPIs (OR 0.517, 95% CI
0.281-0.95; P=.03), SAPT (OR 0.56, 95% CI 0.342-0.915;
P=.02), and DAPT (OR 2.821, 95% CI 1.12-7.106; P=.03) was
significantly associated with GIBCG occurrence in the high-risk
population (Table S19 in Multimedia Appendix 1).

Clinical Application
The XGBoost model was ultimately selected as the algorithm
for the web-based calculator available on our website (Figure
4; also see [31]). Users input 15 admission features into the
questionnaire interface, and the web page automatically predicts
the patient’s GIBCG risk level. The results section displays the
predicted risk along with its classification. Simultaneously, the
calculator generates a force plot to interpret the prediction,
highlighting the features influencing the decision. SHAP values
provide insights into the contribution of each feature to the
predicted risk of GIBCG: blue features on the right drive the
prediction toward “non-GIB,” while red features on the left
indicate a higher likelihood of “GIB.” For example, when we
entered the admission features of 2 patients from the Drum
Tower cohort, the calculator provided their risk predictions
along with corresponding interpretation plots (Figure 4). At the
time of admission, patient 1 presented with decreased albumin,
elevated white blood cell counts, and a low platelet count within
the normal range. These 3 factors were identified as the primary
contributors to the increased GIBCG risk and warrant special
clinical attention. The model classified patient 1 as high risk
and recommended a preventive strategy. Preoperative PPIs use
may be considered, and for patients on DAPT or OACs, an early
transition to SAPT or alternative therapies is advised. By
contrast, although patient 2 is older, most of their predictive
factors were within normal ranges, leading to a classification
as low risk. For patients with indications, antiplatelet therapy
can be continued until preoperative cessation to mitigate the
risk of adverse cardiovascular events. This personalized medical
approach may help reduce GIBCG risk, improve patient
prognosis, and enhance the overall quality of health care
services.
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Figure 4. Web-based calculator of the XGBoost (Extreme Gradient Boosting) model for risk stratification and personalized medicine. The web-based
risk calculator predicts risk accurately online and in real time, providing a convenient tool for clinical doctors. It utilizes 15 features, including patient
age, comorbidities, and initial examination results upon admission, to predict the risk of gastrointestinal bleeding in cardiac surgery patients. Additionally,
it provides individualized interpretations of risk factors, outputs the patient's risk level, facilitates risk stratification, and guides targeted medication use.

Discussion

Principal Findings
In this multicenter study, we developed and validated ML-based
prediction models for GIBCG. After evaluating various feature
selection methods and ML algorithms, we identified LASSO
for feature selection and XGBoost for model development as
the optimal combination. The final model, utilizing 15 admission
features, demonstrated strong discriminative performance,
calibration, and clinical utility across both the derivation and
external validation cohorts. The top 5 predictive features for
GIBCG were ejection fraction, INR, chronic heart failure, age,

and platelet count, in that order. To our knowledge, this study
is the first to develop a model that accurately predicts GIBCG
using admission features. Furthermore, our model is
prognostically relevant, as it identifies high-risk individuals
with an increased postoperative mortality rate, underscoring the
need for clinical vigilance. By enabling early risk stratification
and targeted prevention, our ML model may help mitigate the
risk of GIBCG.

In the derivation and Drum Tower validation cohorts, the
prevalence of GIBCG was 803 out of 13,399 (5.99%) patients
and 179 out of 2745 (6.52%) patients, respectively, slightly
higher than previous epidemiological estimates. This
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discrepancy may stem from our inclusion of patients with
positive occult blood tests as positive cases. While these patients
have no overt bleeding, early identification and preventive
measures may help avert the progression to significant bleeding.
Including occult blood positivity in the outcome definition
enhances the model’s sensitivity, enabling earlier risk detection
and management. Furthermore, subgroup analysis demonstrated
that the model performed better in identifying patients with
more severe bleeding, reinforcing its utility for early screening
of high-risk patients.

The model developed in the derivation cohort was validated in
a large, independent external validation cohort (Drum Tower),
consistently demonstrating excellent performance. In intensive
care, stress-related GIB remains a significant concern [32,33].
To further assess the model’s generalization capability across
different populations, we tested it on the MIMIC cohort. This
introduced potential biases in the following aspects: (1) the
incidence of GIBCG in the MIMIC cohort was higher than in
the other 2 cohorts, likely due to the greater severity of illness
among these patients and the absence of fecal occult blood test
results in some cases, which may have led to selection bias; (2)
the AUROC for predicting GIBCG in the MIMIC cohort was
lower than in the other cohorts. This discrepancy is primarily
due to the higher proportion of critically ill patients in the
MIMIC cohort. Analysis reveals that the model performs better
for the mild subgroup than for the severe cases (Figure S4 in
Multimedia Appendix 1). Furthermore, we conducted a subgroup
analysis focusing on severe GIB (Figure S3 in Multimedia
Appendix 1). When the outcome was defined as severe GIB,
the model’s AUROC in the MIMIC cohort improved
substantially, reaching 0.8388. These findings demonstrate that
the model has predictive value in critically ill patient
populations, particularly in identifying patients at risk for severe
GIB.

Currently, no dedicated tool exists for assessing GIB risk in
CABG patients. To address this gap, we developed a new
predictive model and compared it with the PRECISE-DAPT
score, a commonly used tool in internal medicine for evaluating
bleeding risk in patients receiving DAPT [12]. Across all study
cohorts, our model demonstrated superior performance, as
evidenced by its higher AUROC and greater net benefit, as
shown in the receiver operating characteristic and DCA curves.
Furthermore, our model has been validated as a predictor of
patient prognosis. In addition, we compared its predictive
performance for in-hospital mortality with that of the
PRECISE-DAPT score, demonstrating a significantly higher
AUROC for our model, underscoring its superior prognostic
capability. The PRECISE-DAPT score, developed using Cox
regression, is widely used to predict bleeding risk in DAPT
patients. However, its reliance on clinical variables that exclude
cardiovascular function and gastrointestinal status may limit its
applicability in patients undergoing cardiac surgery or in
predicting GIB risk. By contrast, ML excels at capturing
nonlinear relationships and complex interactions between
variables, enabling our model to focus specifically on predicting
GIBCG with superior performance. However, our model has
limitations. It requires validation in larger-scale prospective
cohorts to further establish its reliability. Additionally, its

interpretability remains a challenge, making it difficult for
clinicians to fully understand the reasoning behind its
predictions. To address this, we incorporated SHAP to enhance
explainability, as detailed in the following sections.

High-risk patients with GIBCG identified by the model have a
significantly increased risk of death and should receive
heightened clinical attention. Early identification enables timely
interventions, such as preventive medication and optimized
perioperative management, to mitigate GIBCG risk and improve
prognosis. Strategies include PPIs use, risk factor management,
and Helicobacter pylori eradication, which have been shown
to reduce antithrombotic therapy–associated GIB [34]. Current
guidelines recommend prophylactic PPIs use in cardiac surgery
patients to minimize gastrointestinal adverse events, with a class
Ⅱa level of evidence [35].

Additionally, managing antithrombotic therapy in high-risk
patients with GIBCG should be optimized. Aspirin and
clopidogrel are the most commonly used antiplatelet agents,
and patients experiencing acute GIB while on aspirin are
generally advised to continue therapy whenever possible
[36-38]. During the perioperative period of CABG, aspirin can
typically be maintained, except in cases of extremely high
bleeding risk [39,40]. For patients scheduled for elective CABG
who are receiving P2Y12 receptor blockers (eg, clopidogrel,
prasugrel, ticagrelor), guidelines recommend discontinuing
these agents 5-7 days before surgery to reduce the bleeding risk
[41,42]. In patients with an elevated bleeding risk,
discontinuation of antiplatelet therapy may be considered even
earlier [36,37,43]. Furthermore, the concomitant use of
anticoagulants and antiplatelet agents should be avoided
whenever possible due to the significantly increased risk of GIB
[44]. Existing evidence suggests that prophylactic PPIs use may
be beneficial for high-risk patients undergoing CABG. For those
already receiving DAPT or OACs preoperatively, an earlier
transition to SAPT or alternative therapies should be considered
to mitigate bleeding risk.

Additionally, our findings reinforce this evidence, demonstrating
that preoperative PPIs use independently protects high-risk
patients from developing GIBCG, whereas DAPT and OACs
independently increase the risk. The protective effect of PPIs
is primarily attributed to their irreversible binding to proton
pumps in the secretory tubules and vesicles of gastric parietal

cells, leading to H+/K+-ATPase inhibition and subsequent
suppression of gastric acid secretion [45]. This helps reduce
gastric mucosal damage, prevent ulcer formation, and lower the
risk of stress ulcer bleeding [46,47]. Moreover, the suppression
of gastric acid secretion by PPIs significantly increases gastric
pH, preventing the conversion of pepsinogen to pepsin, which
helps maintain clot stability and promotes hemostasis [48,49].
By contrast, antiplatelet agents heighten the risk of GIBCG.
Aspirin, for instance, disrupts the gastric mucosal protective
layer and induces oxidative stress and apoptosis in epithelial
cells, leading to direct gastrointestinal injury [50,51]. It also
inhibits cyclooxygenase (COX)-1 and COX-2, reducing
prostaglandin production via COX-1, which weakens mucosal
protection and contributes to indirect gastrointestinal damage
[52]. Additionally, aspirin may impact the gut microbiota,
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triggering inflammation by stimulating the immune system
through Toll-like receptor 4 [53]. Drugs such as clopidogrel
and ticagrelor act indirectly on the gastrointestinal mucosa by
inhibiting adenosine diphosphate receptors, reducing the release
of vascular endothelial growth factors, inhibiting
neovascularization, and hindering gastrointestinal mucosal
repair, potentially promoting GIB [54,55]. Furthermore, DAPT
has a synergistic effect that can further exacerbate
gastrointestinal mucosal damage. OACs increase the risk of
GIB through mechanisms such as their local anticoagulation
effect, direct corrosive action, and mucosal repair inhibition
[56-58]. They prolong clotting time and increase capillary
fragility and permeability, thereby elevating the risk of bleeding.
Gastrointestinal damage caused by OACs is associated with
small intestinal mucosal permeability glycoproteins, which
regulate OACs concentration in the gastrointestinal tract. An
incompletely absorbed OACs in the gastrointestinal tract may
exert a local effect on the mucosa, leading to bleeding [59]. The
mechanisms outlined above suggest a potential link, highlighting
the need for future experimental studies to further explore the
molecular mechanisms underlying the relationship between
preoperative medications and GIB risk.

ML technology is often regarded as a “black box,” with its
prediction and reasoning processes lacking transparency.
Therefore, understanding how ML models make decisions is
crucial for clinicians to build trust in the model and identify
potential biases. This underscores another key advantage of our
study: the use of the SHAP method to provide both global and
local explanations of the model [29,60]. In the global
explanation, the SHAP summary plot illustrates the overall
distribution of each feature’s impact on the model output.
Moreover, in GIBCG prediction, the top 5 important admission
features include cardiac function–related indicators (such as left
ventricular ejection fraction and history of chronic heart failure),
age, platelet count, and INR. Notably, left ventricular
dysfunction and heart failure are among the most significant
independent predictors of mortality and other major adverse
events, including bleeding, following CABG [61,62]. The
increased risk of postoperative GIB in patients with heart failure
may be attributed to reduced cardiac output, which leads to
gastrointestinal hypoperfusion, resulting in ischemia and hypoxia
of the gastrointestinal mucosa and ultimately weakening its
protective barrier function [63]. During ischemia-reperfusion,
the release of oxygen-free radicals and inflammatory mediators
further exacerbates gastric mucosal injury [64], thereby
increasing the risk of ulcers and bleeding. Another important
factor is age. Specifically, older adult patients are at a higher
risk of GIBCG due to increased vascular fragility [65], impaired
gastrointestinal mucosal barrier function [66], multiple
comorbidities, and long-term use of gastrointestinal-damaging
medications (eg, aspirin). Studies have shown that age over 65
years (OR 2.1) is a risk factor for gastrointestinal complications
after CABG [67], while age (OR 1.04) is a predictor of bleeding
and transfusion during surgery [68]. These findings align with
the interpretation of features in our model, underscoring their
clinical significance. Specifically, older adult patients or those
with poor preoperative cardiac function are at an increased risk
of developing GIB postoperatively and warrant heightened
attention. For such populations, greater emphasis should be

placed on GIB prevention during preoperative preparation, with
enhanced perioperative monitoring, protection of cardiac
function, and optimization of blood flow management.
Furthermore, coagulation status is closely associated with the
occurrence of GIB after cardiac surgery [69-73]. In particular,
platelet counts [72] and INR [73] are key indicators of
coagulation function that are simple to measure and readily
accessible. Abnormal values at admission can help clinicians
promptly adjust perioperative antithrombotic treatment
strategies, thereby reducing the risk of GIBCG.

Local explanations provide personalized interpretations for each
patient’s prediction, while force plots visualize the specific
contributions of each feature to the predicted value. For example,
in Figure 4, patient 1 is relatively young and has comparatively
good cardiac function. However, decreased albumin, elevated
white blood cell count, and slightly lower platelet levels (though
within the normal range) are identified as the main factors
contributing to the increased risk of GIBCG. Previous studies
have shown that preoperative hypoalbuminemia is significantly
associated with increased mortality [74,75] and postoperative
complications, including bleeding [74], in cardiac surgery
patients. Notably, an elevated white blood cell count reflects
an underlying inflammatory state, which has been associated
with increased mortality and complications following CABG
[76,77]. Nutritional support, close monitoring of liver function,
management of inflammatory responses, and optimization of
antithrombotic therapy may help reduce the risk of GIBCG in
this patient. Based on readily accessible features, our web
platform enables early prediction of GIBCG risk and provides
personalized explanations through force plots. This serves as a
valuable reference for clinicians in making individualized
decisions, thereby supporting the precise prevention of GIBCG.

ML is increasingly applied in personalized medicine and has
the potential to improve patient outcomes. However, ethical
and practical considerations warrant further discussion [78].
First, patient data privacy is critical. Even deidentified data can
be reidentified through available data points [79] or triangulation
with other data sets [80]. To mitigate this risk, strategies such
as suppression (removing sensitive information), generalization
(transforming specific data into ranges), and data minimization
(collecting only essential data) are applied [78]. Second,
obtaining consent from each patient poses a challenge in
acquiring large-scale training data. Alternative methods, such
as dynamic consent, broad consent, and implied consent with
opt-out options, have been proposed. In our retrospective cohort,
broad consent was obtained, allowing for the future use of
anonymized data without specific knowledge of the studies [81].
Third, algorithmic bias is a significant concern in ML
applications. As ML models are trained on historical data, any
biases present in the training data (eg, related to race, gender,
or socioeconomic status) may be perpetuated or even amplified
in predictions [82]. In addition, experts involved in labeling the
data may inadvertently introduce their own biases into the
algorithm [83]. Addressing algorithmic bias requires ensuring
the diversity and representativeness of the training data set. For
instance, our study utilized multicenter data for model training.
Moreover, enhancing model interpretability allows health care
professionals to understand its decision-making process,
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enabling them to identify and mitigate potential biases.
Continuous monitoring and evaluation should also be conducted
during the model’s application. In future research, we plan to
validate our model across different populations and refine it
based on feedback [84]. Notably, surveys indicate that many
American adults are uncomfortable with doctors relying on ML
for decision-making [85]. Most ML systems are designed to
assist clinicians in decision-making with oversight rather than
functioning autonomously [86]. This approach helps alleviate
public concerns about ML-driven decisions while ensuring
health care quality and patient safety. Future efforts to integrate
ML into health care should prioritize the development and
implementation of standardized ethical frameworks and
guidelines.

Recently, ML has made significant progress in the field of
cardiovascular diseases and related surgeries [17,18]. Research
has primarily focused on surgical risk assessment [87],
prediction of postoperative complications [88-93], evaluation
of patient prognosis [94,95], and guidance for personalized
medicine [96]. Several ML models have been developed to
predict postoperative complications in cardiac surgery, including
bleeding [88,89], acute kidney injury [90,91], delirium [92],
and major adverse cardiovascular and cerebrovascular events
[93]. Furthermore, studies have shown that ML algorithms
perform exceptionally well in predicting severe bleeding after
CABG [89]. Additionally, ML has been demonstrated to
outperform traditional risk-scoring methods in predicting the
risk of GIB following antithrombotic therapy [20]. However,
in the surgical field, ML models specifically targeting GIBCG
remain unavailable. To date, only a single-center study has
proposed a traditional risk prediction model [10], which does
not enable preoperative prediction of GIBCG risk, thereby
limiting early prevention efforts. To address this critical gap,
we developed an ML model using multicenter data to predict
the risk of GIBCG. The model was validated on 2 independent
external cohorts, demonstrating its ability to accurately predict
a patient’s risk of GIBCG upon admission and guide
personalized preventive measures. This approach may help
reduce the incidence of this complication and improve patient
outcomes. Furthermore, it highlights the significant value of

ML in cardiovascular surgery for preventing complications and
enhancing the quality of patient care.

Limitations
Our study has several limitations. First, the inclusion of
retrospective cohorts may introduce selection bias. However,
incorporating a prospective cohort in the model development,
along with the use of rigorous selection criteria and a substantial
sample size, may help mitigate this limitation. Second, the model
was developed based on a Chinese population, and its
generalizability to global populations remains uncertain.
Nevertheless, its acceptable performance in critical care cohorts
in the United States suggests its potential broader applicability.
Future prospective validation is necessary to further refine and
evaluate the model’s performance. Third, the causal relationships
between predictive features (risk factors) and GIBCG, as well
as between preoperative medication and GIBCG, require further
investigation. Randomized controlled trials are essential to
determine whether interventions targeting these risk factors and
modifications to preoperative medication can effectively prevent
GIBCG. Lastly, this study was retrospectively registered, which
may introduce biases in design and reporting. To address this,
we ensured transparency by adhering to strict inclusion and
exclusion criteria and providing a detailed methodology and
results. The substantial sample size and multicenter design help
mitigate potential biases from retrospective registration and
enhance the study’s reliability.

Conclusions
In this study, we successfully developed an XGBoost-based
ML model for GIBCG risk prediction using 15 readily accessible
admission features, facilitating precision prevention and
personalized management of GIBCG. For high-risk patients
identified by the model—who have an increased risk of
in-hospital mortality and require heightened clinical
attention—prophylactic PPIs administration and adjustments
to antithrombotic therapy may help reduce the incidence of
GIBCG. Moreover, the model demonstrated consistent and
excellent performance across both the derivation and validation
cohorts, confirming its robustness and scalability. To enhance
clinical applicability, it has also been integrated into a web-based
risk prediction calculator.
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CABG: coronary artery bypass grafting
COX: cyclooxygenase
DAPT: dual antiplatelet therapy
DCA: decision curve analysis
GIB: gastrointestinal bleeding
GIBCG: gastrointestinal bleeding after coronary artery bypass grafting
ICU: intensive care unit
INR: international normalized ratio
K-Best: K-best feature selection
LASSO: least absolute shrinkage and selection operator
MIMIC-IV: Medical Information Mart for Intensive Care IV
ML: machine learning
OACs: oral anticoagulants
OR: odds ratio
PPIs: proton pump inhibitors
PRECISE-DAPT: predicting bleeding complications in patients undergoing stent implantation and subsequent
dual antiplatelet therapy
RFE: random forest recursive feature elimination
SAPT: single antiplatelet therapy
SHAP: Shapley Additive Explanations
SOFA: Sequential Organ Failure Assessment
XGBoost: Extreme Gradient Boosting
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