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Abstract

Background: Hypertension is a major global health issue and a significant modifiable risk factor for cardiovascular diseases,
contributing to a substantial socioeconomic burden due to its high prevalence. In China, particularly among populations living
near desert regions, hypertension is even more prevalent due to unique environmental and lifestyle conditions, exacerbating the
disease burden in these areas, underscoring the urgent need for effective early detection and intervention strategies.

Objective: This study aims to develop, calibrate, and prospectively validate a 2-year hypertension risk prediction model by
using large-scale health examination data collected from populations residing in 4 regions surrounding the Taklamakan Desert
of northwest China.

Methods: We retrospectively analyzed the health examination data of 1,038,170 adults (2019-2021) and prospectively validated
our findings in a separate cohort of 961,519 adults (2021-2023). Data included demographics, lifestyle factors, physical
examinations, and laboratory measurements. Feature selection was performed using light gradient-boosting machine–based
recursive feature elimination with cross-validation and Least Absolute Shrinkage and Selection Operator, yielding 24 key predictors.
Multiple machine learning (logistic regression, random forest, extreme gradient boosting, light gradient-boosting machine) and
deep learning (Feature Tokenizer + Transformer, SAINT) models were trained with Bayesian hyperparameter optimization.

Results: Over a 2-year follow-up, 15.20% (157,766/1,038,170) of the participants in the retrospective cohort and 10.50%
(101,077/961,519) in the prospective cohort developed hypertension. Among the models developed, the CatBoost model
demonstrated the best performance, achieving area under the curve (AUC) values of 0.888 (95% CI 0.886-0.889) in the retrospective
cohort and 0.803 (95% CI 0.801-0.804) in the prospective cohort. Calibration via isotonic regression improved the model’s
probability estimates, with Brier scores of 0.090 (95% CI 0.089-0.091) and 0.102 (95% CI 0.101-0.103) in the internal validation
and prospective cohorts, respectively. Participants were ranked by the positive predictive value calculated using the calibrated
model and stratified into 4 risk categories (low, medium, high, and very high), with the very high group exhibiting a 41.08%
(5741/13,975) hypertension incidence over 2 years. Age, BMI, and socioeconomic factors were identified as significant predictors
of hypertension.

Conclusions: Our machine learning model effectively predicted the 2-year risk of hypertension, making it particularly suitable
for preventive health care management in high-risk populations residing in the desert regions of China. Our model exhibited
excellent predictive performance and has potential for clinical application. A web-based application was developed based on our

J Med Internet Res 2025 | vol. 27 | e68442 | p. 1https://www.jmir.org/2025/1/e68442
(page number not for citation purposes)

Cheng et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:zhouyi@mail.sysu.edu.cn
http://www.w3.org/Style/XSL
http://www.renderx.com/


predictive model, which further enhanced the accessibility for clinical and public health use, aiding in reducing the burden of
hypertension through timely prevention strategies.

(J Med Internet Res 2025;27:e68442) doi: 10.2196/68442
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Introduction

Cardiovascular diseases are among the leading causes of chronic
noncommunicable diseases worldwide and have become the
primary cause of death globally [1]. Hypertension, a major
preventable risk factor for cardiovascular disease, accounts for
approximately 50% of all cardiovascular-related deaths globally
[2]. In China, the prevalence of hypertension has been rising
due to rapid urbanization, increasing affluence, and an aging
population. Recent surveys estimate that approximately 244.5
million Chinese adults (23.2%) are affected by hypertension,
with this number continuing to increase [3,4]. In northwestern
China, populations residing in the Taklamakan Desert region
face unique public health challenges, as harsh environmental
conditions such as extreme temperature fluctuations, frequent
sandstorms, particulate matter pollution, and limited greenspace
are associated with an elevated prevalence of hypertension [5-7].
Given the increasing burden of hypertension, there is an urgent
need for effective tools to identify high-risk individuals early
and implement preventive measures.

Numerous hypertension risk prediction models have been
developed using electronic health records based on a variety of
methodological approaches, including traditional statistical
techniques such as Cox regression and logistic regression, as
well as machine learning and deep learning methods [8,9].
Although these models have demonstrated promising
discriminatory power, several limitations persist. First, many
studies have constructed models using small sample sizes or
data from a single medical center, thereby limiting the external
validity and generalizability of these models [10-14]. Second,
a significant proportion of models lack validation on prospective
datasets or independent external datasets, which impedes the
comprehensive assessment of model robustness [12,15-18].
Additionally, some models incorporate an excessive number of
variables or include variables that are not easily accessible in
health examinations, thus hindering their practical application
[19,20]. Finally, the majority of these models have been
developed using data from European and American populations,
thereby limiting their applicability to populations in other
regions, including Asia.

Therefore, the objective of this study was to develop and
prospectively validate a 2-year hypertension incidence risk
prediction model by using health examination data collected
from populations residing in 4 regions surrounding the
Taklamakan Desert between 2019 and 2023. Our model aims
to stratify individuals by their risk of developing hypertension,
thus facilitating targeted prevention and early intervention
strategies.

Methods

Data Source and Study Design
This retrospective cohort study utilized health examination data
from adults collected between 2019 and 2021 at 1750 hospitals
and community clinics across 4 regions surrounding the
Taklamakan Desert of northwest China. Participants' health
records were categorized into 3 components: personal and
lifestyle information, standard physical examinations, and
clinical measurements. Personal and lifestyle data included
demographic details, personal and family medical histories,
smoking and alcohol consumption habits, dietary patterns, and
physical activity levels. Standard physical examinations recorded
BMI, waist circumference, heart rate, and blood pressure, while
clinical measurements assessed blood biochemical parameters.

A total of 2,872,837 participants were initially included. After
applying the following exclusion criteria, that is, (1) individuals
younger than 18 years, (2) individuals with a prior diagnosis of
hypertension, and (3) participants with incomplete follow-up
data, the final study cohort comprised 1,038,170 participants.
For external validation, data from a prospective cohort
(2021-2023) were employed, following the exclusion criteria
outlined in Figure 1. Variables with more than 30% missing
data were excluded from the analysis, following the
methodology used in a previous study [21]. For variables with
fewer missing values, the random forest algorithm was used for
imputation. Multimedia Appendices 1 and 2 provide detailed
information on the percentage of missing values for each
variable in the retrospective and prospective cohorts prior to
imputation.
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Figure 1. Flowchart illustrating the exclusion criteria, missing data handling, feature selection, model building (2019-2021), and validation (2021-2023)
for the 2-year hypertension risk prediction study across 4 Taklamakan Desert–adjacent regions in northwest China.

Ethics Approval
This study was approved by the Tsinghua University Science
and Technology ethics committee (Medicine; project:
20240123). The data used in this research were collected and
managed by the Xinjiang Uygur Autonomous Region Health
Commission and were fully anonymized and deidentified before
being accessed. According to ethical guidelines in China
(Section 3.32), the secondary use of anonymized health data
for research purposes is exempt from requiring additional
informed consent from individual patients [22]. This exemption
aligns with international research practices [23]. Researchers
accessed the anonymized data through a designated, secure
platform without internet connectivity, ensuring strict data
privacy and security protocols. Neither the manuscript nor the
supplementary materials contain identifiable information or
images of participants, and no financial compensation was
involved, as this study was based on secondary data analysis.

Definition of Hypertension
Blood pressure was measured by trained health care
professionals by using standardized protocols. The average of
3 consecutive right-arm measurements, taken 30 seconds apart,
was used for analysis. Hypertension was defined by any of the
following criteria: (1) self-reported diagnosis of hypertension,
(2) current use of antihypertensive medication, or (3) an average
systolic blood pressure ≥140 mm Hg, diastolic blood pressure
≥90 mm Hg, or both [24,25].

Statistical Analysis
The Kolmogorov-Smirnov test was used to assess whether
continuous variables followed a normal distribution. To compare

baseline characteristics between participants with and without
hypertension, we applied the chi-square test for categorical
variables, while continuous variables were analyzed using either
the independent-sample t test (2-sided) or the rank-sum test,
depending on the distribution characteristics.

Prediction Modeling and Evaluation
Participants from the retrospective cohort were randomly
assigned to training and internal validation sets in a 7:3 ratio.
Feature selection commenced with univariate logistic regression
analyses to identify independent risk factors. Subsequently,
both light gradient-boosting machine (LightGBM)–based
recursive feature elimination with cross-validation (RFECV)
[26,27] and Least Absolute Shrinkage and Selection Operator
(LASSO) methods were applied to further refine the feature set.
The final predictive features were determined by selecting the
intersection of variables identified by both LightGBM-RFECV
and LASSO.

The final model was built using CatBoost, a high-performance
gradient boosting algorithm [28]. Additionally, several other
models, including logistic regression, random forest, extreme
gradient boosting [29], LightGBM, and 2 deep learning methods
(Feature Tokenizer + Transformer [30] and SAINT [31]), were
constructed to compare predictive performance for hypertension
incidence. Bayesian optimization via Hyperopt [32] was
employed to fine-tune the hyperparameters, maximizing the
area under the receiver operating characteristic (AUROC) curve
across 5-fold cross-validation. Each model underwent 1000
optimization trials. The detailed parameters for each model are
provided in Multimedia Appendix 3.
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The optimal model was evaluated using AUROC, average
precision, accuracy, sensitivity, specificity, and confusion matrix
in the internal validation set. Calibration of the selected model
on the training set was performed using isotonic regression [33]
to improve predictive accuracy and reliability. The calibrated
model was subsequently transformed to both the internal
validation set and the prospective cohort. Calibration curves,
constructed with 25 evenly spaced bins, were then used to
evaluate the model’s calibration and predictive performance
across both validation sets.

To further refine risk stratification, we calculated the positive
predictive values for individuals in the prospective cohort by
using the calibrated model. Individuals were ranked by positive
predictive values and categorized into 4 risk levels, ranging
from low to very high risk. Univariate Cox regression was
performed to validate the effectiveness of these risk categories.

Model Interpretation
Shapley Additive Explanations (SHAP) [34] was employed to
interpret the contribution of each feature to the model’s
predictions. For highly weighted features such as age, gender,
and BMI, we created subpopulations to analyze the distribution
of risk categories within these groups. All analyses were
conducted using Python software (version 3.8.0) with packages,
including CatBoost (version 1.2.5), Hyperopt (version 0.2.7),

and SHAP (version 0.44.1), as well as R software (version 4.0.2;
R Foundation for Statistical Computing). A 2-tailed P value
less than .05 was considered statistically significant.

Results

Clinical Baseline Characteristics
Table 1 outlines the baseline characteristics of the study cohorts.
After applying the exclusion criteria, the retrospective cohort
included 1,038,170 participants, aged 18-100 years, with
baseline characteristics recorded between January and November
2019. The prospective cohort comprised 961,519 participants
within the same age range, with baseline characteristics collected
from January to November 2021. Over the 2-year follow-up
period, the incidence of hypertension was 15.20%
(157,766/1,038,170) in the retrospective cohort and 10.50%
(101,077/961,519) in the prospective cohort. At baseline,
compared to the nonhypertensive group, the hypertensive group
had a higher proportion of males, resided in urban areas, and
had lower education levels. The hypertensive group also had
higher prevalence of hepatic steatosis and type 2 diabetes along
with elevated waist circumference, BMI, systolic blood pressure,
and diastolic blood pressure. Multimedia Appendices 4 and 5
provide a detailed comparison of the characteristics between
individuals with and without incident hypertension in both
cohorts.
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Table 1. Clinical baseline information of the retrospective and prospective cohortsa.

Prospective cohort (n=961,519)Retrospective cohort (n=1,038,170)Characteristics

42.77 (14.45)40.11 (14.73)Age at baseline (years), mean (SD)

Sex, n (%)

431,824 (44.91)458,964 (44.21)Male

529,695 (55.09)579,206 (55.79)Female

Residence, n (%)

865,464 (90.01)915,254 (88.16)Rural

96,055 (9.99)122,916 (11.84)Urban

85.00 (11.21)83.37 (10.65)Waist circumference (cm), mean (SD)

24.64 (3.82)23.80 (3.67)BMI (kg/m2), mean (SD)

Educational level, n (%)

40,876 (4.25)42,801 (4.12)Illiterate or semiliterate

376,961 (39.2)381,811 (36.78)Primary school

410,493 (42.69)480,768 (46.31)Junior middle school

85,923 (8.94)87,775 (8.45)Senior middle school

47,266 (4.92)45,015 (4.34)College degree and above

Exercise frequency, n (%)

922,358 (95.93)1,000,327 (96.35)Never

16,839 (1.75)7592 (0.73)Occasionally

22,322 (2.32)30,251 (2.92)Often

Dietary patterns, n (%)

936,106 (97.36)939,046 (90.45)Meat and vegetable balanced

13,578 (1.41)52,539 (5.06)Meat-based

11,835 (1.23)46,585 (4.49)Vegetarian-based

Smoking status, n (%)

861,763 (89.63)889,175 (85.65)Never

96,374 (10.02)137,212 (13.22)Smoking

3382 (0.35)11,783 (1.13)Quit smoking

Alcohol intake, n (%)

894,674 (93.05)923,357 (88.94)Never

60,485 (6.29)102,187 (9.84)Occasionally

6360 (0.66)12,626 (1.22)Often

74.30 (9.41)73.59 (10.13)Heart rate (bpm), mean (SD)

111.55 (11.66)109.03 (12.25)Systolic blood pressure (mm Hg), mean (SD)

67.81 (8.01)66.41 (8.45)Diastolic blood pressure (mm Hg), mean (SD)

141.38 (17.47)139.76 (17.51)Hemoglobin (g/L), mean (SD)

6.44 (1.49)6.40 (1.44)White blood cell count (109/L), mean (SD)

20.94 (9.20)21.07 (9.02)Alanine aminotransferase (U/L), mean (SD)

21.90 (6.81)22.27 (6.51)Aspartate transaminase (U/L), mean (SD)

66.59 (17.78)66.08 (17.64)Serum creatinine (μmol/L), mean (SD)

4.14 (0.90)4.07 (0.87)Total cholesterol (mmol/L), mean (SD)

1.28 (0.34)1.31 (0.33)HDL-Ca (mmol/L), mean (SD)
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Prospective cohort (n=961,519)Retrospective cohort (n=1,038,170)Characteristics

2.25 (0.84)2.32 (0.75)LDL-Cb (mmol/L), mean (SD)

Hepatic steatosis, n (%)

932,220 (96.95)999,729 (96.3)No

29,299 (3.05)38,441 (3.7)Yes

Type 2 diabetes, n (%)

921,947 (95.88)1,002,725 (96.59)No

39,572 (4.12)35,445 (3.41)Yes

Family history of hypertension, n (%)

883,277 (91.86)952,605 (91.76)No

78,242 (8.14)85,565 (8.24)Yes

aHDL-C: high-density lipoprotein cholesterol.
bLDL-C: low-density lipoprotein cholesterol.

Development and Validation of Predictive Models
Recursive feature elimination is a widely used method for
feature selection. It iteratively trains a model, assesses the
importance of each feature, and removes the least important
ones until the optimal number of features is identified. In this
study, we used an enhanced version of recursive feature
elimination, RFECV, which incorporates cross-validation to
evaluate model performance at each iteration. Additionally,

LASSO regression was employed, using L1 regularization to
shrink the coefficients of less important features to zero, thereby
further refining the feature set (Figure 2). Through the
application of both LightGBM-RFECV and LASSO, we
identified 26 and 27 potential risk predictors for hypertension,
respectively. By intersecting the results of these 2 methods, we
selected 24 key features for the final construction of the 2-year
hypertension incidence risk prediction model.

Figure 2. Feature selection of the model. (A) Feature selection results based on light gradient-boosting machine–based recursive feature elimination
with cross-validation. (B) Feature selection results based on Least Absolute Shrinkage and Selection Operator. AUROC: area under the receiver operating
characteristic; LightGBM: light gradient-boosting machine; RFECV: recursive feature elimination with cross-validation.

Model Performance
We evaluated the performance of several machine learning and
deep learning models. Among the models, CatBoost
demonstrated the highest predictive accuracy, with an AUROC
curve of 0.888 (95% CI 0.886-0.889). Extreme gradient boosting
followed with an AUROC of 0.868 (95% CI 0.866-0.870).
Detailed AUROC comparisons for each model are available in
Multimedia Appendix 6, while the confusion matrix results are
provided in Multimedia Appendix 7. A Mann-Whitney U test
confirmed that CatBoost significantly outperformed the other

algorithms in terms of predictive accuracy (P<.001) (Multimedia
Appendix 8) [35]. Further validation of the CatBoost model
was performed using the prospective cohort. Compared with
the results from the internal validation set, the AUROC for the
prospective cohort decreased to 0.803 (95% CI 0.801-0.804)
(Figure 3). Isotonic regression was applied to calibrate the output
probabilities, improving the accuracy of predicted probabilities
in reflecting actual risks. After calibration, the model’s
performance metrics improved, with a Brier score of 0.090 (95%
CI 0.089-0.091) on the internal validation set and 0.102 (95%
CI 0.101-0.103) on the prospective cohort.
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Figure 3. (A) Receiver operating characteristic curve of the CatBoost model in the retrospective and prospective cohorts. (B) Noncalibrated and
calibrated curves of the CatBoost model in the retrospective cohort. (C) Noncalibrated and calibrated curves of the CatBoost model in the prospective
cohort. (D) Survival curves for time-to-hypertension across 4 risk categories. AUC: area under the curve; HR: hazard ratio.

Following calibration, we calculated the positive predictive
values for each individual and categorized participants into 4
risk levels: low, medium, high, and very high. In the low-risk
group (risk score 0-0.15, n=570,742), only 2.87%
(16,392/570,742) developed hypertension over the 2-year period.
In contrast, 41.08% (5741/13,975) of the individuals in the very
high-risk group (risk score 0.8-1, n=13,975) were diagnosed
with hypertension within the same period (Multimedia Appendix
9). To further assess the differences in hypertension onset across
the 4 risk categories, we performed univariate Cox regression
to estimate time-to-hypertension for each group. The results
showed significant differences between the risk categories

(P<.05), with the hazard ratio for the very high-risk group being
16.4 (95% CI 15.57-16.53) compared with the low-risk group.

Feature Importance and SHAP Analysis
We used the distribution of SHAP values and the corresponding
mean absolute SHAP values within the prospective cohort to
interpret the contribution of each feature in the risk prediction
model. The analysis revealed that the model’s core predictive
power derived primarily from basic biometrics (age, BMI,
gender, and waist circumference), blood pressure indicators
(systolic and diastolic blood pressure), and heart rate (Figure
4).
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Figure 4. (A) Complete distribution of Shapley Additive Explanations values for all features in the prospective dataset. (B) Absolute contribution of
all features based on Shapley Additive Explanations values for all features in the prospective dataset. AI: alcohol intake; ALT: alanine aminotransferase;
AST: aspartate transaminase; DBP: diastolic blood pressure; DP: dietary pattern; EF: exercise frequency; EL: educational level; FHTN: family history
of hypertension; Hb: hemoglobin; HDL-C: high-density lipoprotein cholesterol; HR: heart rate; HS: hepatic steatosis; LDL-C: low-density lipoprotein
cholesterol; SBP: systolic blood pressure; SCr: serum creatinine; SHAP: Shapley Additive Explanations; SS: smoking status; T2DM: type 2 diabetes;
TC: total cholesterol; WBC: white blood cell; WC: waist circumference.

To better understand the impact of individual variables, we
analyzed the SHAP values for the top 6 ranked continuous
variables (Figure 5). We observed that as these feature values

increased, their SHAP values transitioned from negative to
positive, indicating that higher values significantly increased
the likelihood of being classified as high-risk for hypertension.
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Figure 5. (A)-(F) Shapley Additive Explanations value dependence plots for 6 example features in the prospective dataset. DBP: diastolic blood
pressure; HR: heart rate; SBP: systolic blood pressure; SHAP: Shapley Additive Explanations; WC: waist circumference.

Significant Features
In addition to analyzing SHAP values for individual features,
we conducted a grouped analysis of the most influential basic
biometrics (age, sex, and BMI) and socioeconomic factors
(residence and education level) within the prospective cohort
to assess the distribution of the samples across different risk
levels and the model’s predictive performance within these
feature groups.

Based on prior research [19], we divided the population into 4
age categories. The analysis showed that the young population
was predominantly in the low-risk category (343,394/347,996,
98.68%), while the older adult population was primarily

composed of high-risk (68,238/77,664, 87.86%) and very
high-risk (7939/77,664, 10.22%) individuals (Figure 6).
Hypertension incidence within 2 years in the older adults
(22,277/77,664, 28.68%) was significantly higher than that in
the younger population (7154/347,996, 2.05%), confirming age
as a key predictor of hypertension onset. Further analysis (Figure
6B) demonstrated that the model performed best in the 35-49
years age group, with an AUROC of 0.734 (95% CI
0.732-0.737), whereas performance was relatively weaker in
the older adult population, with an AUROC of 0.589 (95% CI
0.585-0.593). This performance disparity may be attributed to
the model’s tendency to assign higher risk to older individuals,
reducing its discriminatory power in this group.
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Figure 6. (A) Proportion of 4 risk categories across different age group subsets. (B) Area under the receiver operating characteristic curve values
evaluated for different age group subsets. AUROC: area under the receiver operating characteristic curve; HTN: hypertension.

Regarding gender, hypertension incidence within 2 years in
women (49,855/529,695, 9.41%) was lower than that in men
(51,222/431,824, 11.86%). A higher proportion of women were
in the low-risk category, that is, 62.51% (331,122/529,695) of
the women were in the low-risk category, while only 55.49%
(239,620/431,824) of the men were in the low-risk category

(Figure 7). Conversely, men were more likely to be in the
high-risk (120,676/431,824, 27.95%) and very high-risk
(7821/431,824, 1.81%) categories. Additionally, the model
performed better in women, achieving an AUROC of 0.821
(95% CI 0.820-0.823) compared to men with an AUROC of
0.785 (95% CI 0.777-0.781).

Figure 7. (A) Proportion of 4 risk categories across different sex group subsets. (B) Area under the receiver operating characteristic curve values
evaluated for male and female subgroups. AUROC: area under the receiver operating characteristic curve; HTN: hypertension.

BMI was categorized according to the World Health
Organization classification: underweight (BMI<18.5), normal
weight (18.5≤BMI<25), overweight (25≤BMI<30), and obesity
(BMI≥30). As BMI increased, the proportion of individuals in

the high-risk and very high-risk categories also increased along
with a corresponding increase in hypertension incidence. This
indicates a strong association between obesity and hypertension
risk (Figure 8).
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Figure 8. (A) Proportion of 4 risk categories across different BMI group subsets. (B) Area under the receiver operating characteristic curve; values
evaluated for different BMI group subsets. AUROC: area under the receiver operating characteristic curve; HTN: hypertension.

We also analyzed the impact of socioeconomic factors on
hypertension risk (Figure 9). Among urban residents, the
proportion of individuals classified as high risk (31,764/96,055,
33.07%) and very high-risk (4084/96,055, 4.25%) was greater
than that among rural residents, where the high-risk group
accounted for 24.66% (213,441/865,464) and the very high-risk
group for 1.14% (9891/865,464). Hypertension incidence among
the urban population (15,664/96,055, 16.31%) was also higher

than that among rural residents (85,414/865,464, 9.87%).
Similarly, individuals with lower levels of education (illiterate
or semiliterate, primary school) had higher proportions in the
high-risk (169,594/417,837, 40.59%) and very high-risk
(9104/417,837, 2.18%) categories, with correspondingly higher
incidence rates (61,741/417,837, 14.77%). These findings
suggest that socioeconomic factors such as living environment
and education level are closely linked to hypertension risk.

Figure 9. (A) Proportion of 4 risk categories across different residence group subsets. (B) Proportion of 4 risk categories across different educational
level group subsets. HTN: hypertension.

Finally, we developed a web-based application based on our
predictive model (see main interface in Multimedia Appendix
10) [36], designed for integration into routine clinical
workflows. During health examinations, clinicians can input
patient data into the application, which then instantly generates
individualized hypertension risk assessments. Each patient is
assigned to 1 of the 4 actionable risk levels (low, medium, high,
very high), aiding in targeted clinical decision-making. The

application also employs interpretable SHAP value
visualizations, allowing clinicians to understand the key
contributors to each patient’s risk profile. The application is
publicly accessible to encourage external validation by health
care providers [36], and we have also released the corresponding
open-source code (Multimedia Appendix 11) [37].
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Discussion

Principal Findings
This study shows a 2-year hypertension risk prediction model
using a retrospective cohort of over 1 million participants from
populations residing in the desert regions of China, with both
internal and external validation. Using feature selection
techniques, we identified 24 significant variables. The CatBoost
model demonstrated superior predictive performance, achieving
an area under the curve (AUC) of 0.888 in the retrospective
cohort and 0.803 in the prospective cohort, outperforming other
machine learning and deep learning models. During the 2-year
follow-up in the prospective cohort, the model effectively
stratified individuals into 4 distinct risk categories, revealing
significant differences in the hazard ratios for hypertension
incidence among these groups. Analysis of the model’s
significant features indicated that the risk of hypertension is
strongly influenced by basic biometrics (age, sex, and BMI)
and socioeconomic factors (residence and education level).
Furthermore, a web-based application was developed and made
open-source, providing clinicians with a practical and accessible
tool to assess hypertension risk and guide early intervention
strategies.

According to the World Health Organization’s report on global
hypertension prevalence, approximately 1.1 billion adults aged
30-79 years have hypertension, with two-thirds residing in low-
and middle-income countries [25]. China, as the largest
middle-income country, has an estimated hypertension
prevalence of 27.5% [38]. In this study, we observed an
incidence rate of 56.30 per 1000 person-years, which is higher
than the national average of 48.60 per 1000 person-years
reported between 2011 and 2015 [39]. This discrepancy may
be attributed to the geographic location of our cohort, composed
of residents from 4 regions near the Taklamakan Desert in
northwest China. Environmental factors, lifestyle choices, and
dietary patterns specific to this area likely contributed to the
higher incidence, underscoring a more severe public health
challenge in these regions and highlighting the need for targeted
prevention strategies.

CatBoost was chosen as the hypertension risk prediction model
due to its superior performance compared to other
gradient-boosting decision tree models, such as LightGBM and
extreme gradient boosting. CatBoost’s key advantage lies in its
ability to efficiently handle high-dimensional categorical data,
thanks to its unique target encoding and ordered boosting
algorithms. These methods minimize data leakage and prevent
the use of future information in current predictions, enhancing
model generalizability and reducing the need for extensive
preprocessing. Although recent advancements in deep learning
for tabular data prediction have shown promise, the 2 deep
learning models (Feature Tokenizer + Transformer and SAINT)
evaluated in this study underperformed slightly compared to
CatBoost. Feature Tokenizer + Transformer leverages feature
tokenization, transforming features into tokens for the
Transformer architecture, while SAINT introduces intersample
attention mechanisms to capture relationships between samples.
Despite their slightly lower performance in this dataset, these

models demonstrated comparable results to other
gradient-boosting decision tree models, indicating that deep
learning approaches have strong potential for future application
in tabular data prediction.

When contrasted with previous studies [10-16], this study
represents an advancement in both sample size and model
performance. Our dataset included data from 1750 hospitals
and community clinics, encompassing a total of 2 million
individuals, ensuring the reliability and robustness of the results.
The CatBoost model achieved an AUC of 0.888 in the
retrospective cohort and 0.803 in the prospective cohort. By
comparison, López-Martínez et al [16] utilized the 2007-2016
National Health and Nutrition Examination Survey dataset to
develop 2 predictive models: a logistic regression model
reported in 2018, which achieved an internal validation AUC
of 0.73 [15] and an artificial neural network model developed
in 2020, which improved the AUC to 0.77.

Consistent with prior studies, our model identified age, gender,
and BMI as the major predictors of hypertension [3,40,41]. We
found that as age and BMI increased, the proportion of
individuals in the high-risk category rose significantly, further
emphasizing their importance in hypertension risk prediction.
In terms of socioeconomic factors, our study showed that
individuals residing in urban areas and those with lower
education levels had higher incidences of hypertension over 2
years. This may be due to urban populations engaging in
consuming diets high in salt and fat while lacking overall
nutritional quality, less physical activity, and being exposed to
more severe environmental pollution [42-44], while individuals
with lower education levels may have reduced access to health
care and limited health literacy, both of which increase their
vulnerability to hypertension [45].

The clinical implications of this study are significant. To our
knowledge, this is one of the first large-scale, prospective cohort
studies focused on hypertension risk prediction in populations
residing in regions surrounding a desert. The model relies on
24 basic clinical and biochemical features that are routinely
collected during health checkups, making it practical for use in
primary health care settings. Given the limited health care
resources in desert regions, the model can assist health care
providers in identifying high-risk individuals for hypertension
up to 2 years in advance. This allows for optimized medical
decision-making and resource allocation, promoting earlier
intervention and potentially reducing the overall disease burden.

Furthermore, the development of a web-based application
extends the model’s utility, allowing for broader clinical
implementation. This user-friendly tool provides an intuitive
way for clinicians to assess hypertension risk predictions and
the specific contributions of individual risk factors. Especially
in resource-constrained regions, this model offers an opportunity
for precision prevention and intervention, potentially reducing
long-term health care costs and improving patient outcomes.
These contributions collectively aim to address previous
methodological and contextual limitations, expand the body of
knowledge, and provide potential solutions to pressing public
health challenges.
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Limitations
This study has several important limitations that may affect the
interpretation and generalizability of the findings. First, some
of the health examination data contained missing values.
Although we addressed this issue by using a random forest
imputation method based on the training set, this approach may
introduce bias, particularly if the missing data are not missing
completely at random. Imputation can improve data
completeness, but it may still impact the accuracy of the model’s
predictions and its external validity. Second, the range of
variables included in this study was limited. Important factors
such as psychological stress, genetic predisposition, and
environmental influences were not incorporated into the model.
These factors have been shown to contribute significantly to
hypertension risk, and their omission may limit the
comprehensiveness of the model. In addition, the model was
developed using data from specific geographic region
populations surrounding desert areas in northwest China.
Although this provides valuable insights for these communities,
the model’s applicability to other populations, particularly those
in different geographic and socioeconomic settings, may be

limited. Lastly, certain lifestyle factors such as physical activity
and diet were based on self-reported data, which are subject to
recall bias and may not accurately reflect actual behaviors.

Conclusions
In conclusion, we developed and validated a 2-year hypertension
incidence risk prediction model by using data from nearly 2
million individuals residing in regions surrounding the
Taklamakan Desert. The model demonstrated strong predictive
performance, with high accuracy in both retrospective and
prospective cohorts. By stratifying individuals into distinct risk
categories, the model identified significant variations in
hypertension incidence rates between these groups, underscoring
its potential as a valuable tool for risk stratification in clinical
practice. To enhance clinical applicability, we further developed
a web-based hypertension prediction application, facilitating
early screening and intervention for high-risk populations. This
study not only holds significant clinical value but also provides
an efficient public health tool for regions with limited health
care resources, supporting early prevention and precision
management of hypertension.
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LASSO: Least Absolute Shrinkage and Selection Operator
LightGBM: light gradient-boosting machine
RFECV: recursive feature elimination with cross-validation
SHAP: Shapley Additive Explanations
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