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Abstract

Background: Prevention of drug-induced QT prolongation (diLQTS) has been the focus of many system-wide clinical decision
support (CDS) tools, which can be directly embedded within the framework of the electronic health record system and triggered
to alert in high-risk patients when a known QT-prolonging medication is ordered. Justification for these CDS systems typically
lies in the ability to accurately predict which patients are at high risk; however, it is not always evident that identification of risk
alone is sufficient for appropriate CDS implementation.

Objective: In this investigation, we examined the impact of a system-wide, alert-based, inpatient CDS tool designed to prevent
diLQTS across 10 known QT-prolonging medications.

Methods: We compared the risk of diLQTS, duration of hospitalization, and in- and out-of-hospital mortality before and after
implementation of the CDS system in 178,097 hospitalizations among 102,847 patients. We also compared outcomes between
those in whom an alert fired and those in whom it did not, and within the various responses to the alert by providers. Analyses
were adjusted for age, sex, race and ethnicity, inpatient location, electrolyte values, and comorbidities, with the latter processed
using an unsupervised clustering analysis applied to the top 500 most common medications and diagnosis codes, respectively.

Results: We found that the simple, rule-based logic of the CDS (any prior electrocardiograph with heart rate–corrected QT
interval (QTc)≥500 ms) successfully identified patients at high risk of diLQTS with an odds ratio of 2.28 (95% CI 2.10-2.47,
P<.001) among those in whom it fired. However, we did not identify any impact on the risk of diLQTS based on provider responses
or on the risk of inpatient, 3-month, 6-month, or 1-year mortality. When compared with rates prior to implementation, the risk
of diLQTS was not significantly different after the CDS tools were deployed across the system, although mortality was significantly
higher after the tools were implemented.

Conclusions: We found that despite successful identification of high-risk patients for diLQTS, deployment of an alert-based
CDS did not impact the risk of diLQTS. These findings suggest that quantification of high risk may be insufficient rationale for
implementation of a CDS system and that hospital systems should consider evaluation of the system in its entirety prior to adoption
to improve clinical outcomes.

(J Med Internet Res 2025;27:e68256) doi: 10.2196/68256
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Introduction

The expansion of electronic health record (EHR) systems has
brought opportunities to apply automated clinical decision
support (CDS) tools to guide day-to-day management decisions.
These systems are attractive in that they can be scaled across
an entire health system to provide guidance in the management
decisions for potentially thousands of patients. When combined
with the ability to directly import patient information from the
EHR and apply algorithms ranging in complexity from simple
rule-based systems to artificial intelligence, these tools have
great potential to improve patient safety and clinical efficacy.

One of the conceptual models that is used as a rationale for
selecting a clinical decision to target for CDS has been the idea
of risk prediction, which is based on the idea that if one could
alert the provider to the presence of an increased risk in an
individual patient, actions could be taken to mitigate that risk.
A number of CDS tools have been created based on this simple
idea [1,2], and many more have been proposed as better
risk-prediction models have been developed and published. In
the past decades, much attention has been drawn to the
importance of calibration and external validation of risk
prediction models, with a specific focus on data shifts and
transportability across populations [3,4], improving the rigor
in which risk prediction itself is evaluated in considering the
creation of a CDS system.

However, even if a risk-prediction model has been sufficiently
vetted for accuracy and calibration, there remains the open
question of what actions can be taken to mitigate risk and
whether the system as a whole provides a meaningful impact
on the desired outcome. While new medications or procedures
are generally subject to randomized clinical trials to demonstrate
effectiveness, such rigor is often overlooked in the design of
CDS systems when the intervention is not as novel or discretely
defined. These systems are often implemented based solely on
the risk prediction itself, implying that if an accurate risk
prediction model can indicate which patients are at high risk,
then providers will “figure out” what to do with that information.
They are rarely subject to formal randomized trials and, in many
cases, are not even evaluated post deployment to assess
effectiveness on the actual outcome.

An example of one such CDS system is that designed to prevent
drug-induced QT prolongation (diLQTS) [5]. diLQTS, and the
subsequent risk of torsade de pointes, is widely recognized as
a clinical concern across health care systems due to the number
of medications that can cause diLQTS, including many used
for noncardiac indications [6]. A number of studies have
identified clinical and genetic [7] risk factors for diLQTS, with
risk-prediction models ranging from simple [5,8], rule-based
algorithms (ie, any prior electrocardiograph [ECG] with heart
rate–corrected QT interval (QTc) longer than 500 ms) to
complex deep learning models [9,10]. Although few complex
models have been implemented in CDS for diLQTS (including
within our own health system), it has been suggested that better
risk prediction could improve the effectiveness of CDS tools
designed to prevent diLQTS.

The limitation of adequate risk prediction was one explanation
for a prior finding by our group in the evaluation of a rule-based,
alert-based CDS system, which found that mortality was
paradoxically decreased in patients in whom the provider chose
to ignore the recommendations of the CDS [11]. While these
results were unexpected and notable, they were generally
dismissed based on the limits of the dataset. It was not evident
that the alert was indeed identifying patients at high risk of
diLQTS, as we did not examine any subjects without an alert.
The mortality signal was explained by the assumption that the
action of the provider was an indicator of sicker patients,
although this explanation could not be directly evaluated due
to limited information about comorbidities or location (ie,
intensive care unit [ICU] versus floor) of each patient. In
addition, that study did not perform any evaluation of the CDS
itself in terms of impact, as all subjects included had the alert
fire; there was no control group available for comparison.

In this follow-up investigation, we applied data extraction
techniques to obtain patient-specific comorbidities, including
medications, diagnoses, location, and laboratory measures, to
evaluate the impact of the CDS to prevent diLQTS. In addition
to the collection of data about those in whom the alert fired, we
also collected data about those who were prescribed a known
QT-prolonging medication without having the alert fire,
including those treated prior to the deployment of the CDS and
those not identified by the rule-based system as being at high
risk. The goal of this investigation is to examine the hypothesis
that the CDS alert system reduced the risk of diLQTS and
explore patient characteristics, clinic settings, and provider
responses to the alert that could have impacted diLQTS as well
as hospitalizations and mortality.

Methods

Data Source and Study Population
The population has been described in detail previously [9-11].
Briefly, we extracted EHR data for any inpatient aged 18-90
years, treated in a UCHealth facility for any indication, in whom
a known QT-prolonging medication was administered that
contained a corresponding CDS that deploys in an interrupted
manner electronically. The list of culprit medications includes
ondansetron, haloperidol, azithromycin, levofloxacin,
escitalopram, citalopram, sotalol, droperidol, methadone, and
hydroxychloroquine. The index visit was defined as the first
order of a culprit medication for a given patient on a given
hospitalization (encounter), with only one medication used to
define each hospitalization for each patient. As such, a given
individual patient could be included more than once, although
each encounter (hospitalization) was only used once for each
patient under a given culprit medication. The earliest date of
enrollment was July 6, 2011, and the latest was April 16, 2024.

CDS Alert System
The CDS alert system uses a native, rule-based logic system
within Epic called the BestPractice Advisory (BPA). To avoid
confusion in terminology, we refer to the “BPA” as the specific
alert that fires for a given patient with a given culprit medication;
we refer to “CDS” as the system as a whole, including those in
whom the BPA did not fire due to not meeting criteria. The
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logic of the CDS is the electronic order for a culprit medication
in a patient in whom a prior ECG had a recorded QTc of ≥500
milliseconds (rate-corrected QTc based on Bazett’s formula).
The alert is interruptive, firing at the time of medication order
entry and requiring the provider to take a given action to proceed
within the system. The specific provider action records how
the provider responded to the alert within the BPA prompt and
included the following categories: Cancel BPA, Acknowledge
or Override warning, Accept BPA (no action taken), and
Remove single order. The latter is considered alert compliance,
and the former 3 were considered noncompliance or ignore.
These 2 categories constituted the action group of the alert.
Only the first BPA alert for a given medication encounter was
used. The specific implementation dates by culprit medication
include sotalol June 2015; methadone July 2016; citalopram
July 2016; droperidol July 2016; haloperidol November 2011;
ondansetron July 2016; azithromycin July 2016; escitalopram
July 2016; levofloxacin September 2016; and
hydroxychloroquine March 2020.

Description of Extraction Process
For a detailed description of the data extraction process, see
Methods in Multimedia Appendix 1. In brief, data was collected
retrospectively, with extraction conducted using the Health Data
Compass EHR repository, an institutional resource containing
a full copy of the EHR backend for research and analysis. The
database was queried to identify those encounters (ie,
hospitalizations) where the BPA fired, as well as those in whom
one of the culprit QT-prolonging medications was ordered
electronically. The latter group includes those who were treated
prior to the deployment of the drug-specific CDS, as well as
those who were treated after but were not identified as being
high risk (ie, QTc≥500 ms). The first order for each culprit
medication was used, such that an individual patient could have
multiple entries if multiple culprit medications were prescribed
on a given encounter, but only one entry per culprit medication
per encounter. Leveraging the longitudinal capacity of the EHR
for time-dependent events, we obtained timestamps for all data
elements extracted, from which were calculated time intervals
linked to the start of the encounter (ie, time and date of
admission). Outpatient mortality was adjudicated as being within
3 months, 6 months, and 1 year of the index encounter
beginning. The final dataset included fully deidentified data,
and no protected health information was included. Access to
the dataset is restricted to investigators covered under the
Colorado Multiple Institution Internal Review Board; to request
access, contact the corresponding author or institutional
representative.

ECG Data Analysis
ECG data were extracted for all ECGs within the system (across
all encounters) for each subject in the dataset in which a QT
interval was present in electronic format. The QRS and QTc
was calculated as QTc=QT interval–max (0, QRS

interval–100)/(RR interval)1/3. For QTc measurements prior to
the medication order, the maximum and mean QTc were
recorded for each encounter (maxPreQT and meanPreQT,
respectively). We then obtained all ECGs performed within 1
hour after the medication order or BPA alert (whichever was

later) and calculated the maximum and mean QTc (maxPostQT
and meanPostQT, respectively). The diagnosis of diLQTS was
defined as any postmed ECG with maximum QTc≥500
milliseconds or a change in maximum QTc over 60 milliseconds
(post- minus pre-).

Clinical Factors
For each encounter, the age, sex, race, and ethnicity were
recorded based on the time of the BPA alert or medication order
(which was earliest). Using these same criteria, we also extracted
all diagnosis codes (ICD-9 [International Classification of
Diseases, Ninth Revision] or ICD-10 [International Statistical
Classification of Diseases, Tenth Revision]) present on the
problem list and all medications in the inpatient medication list
that were ordered prior to the BPA alert or medication order
(whichever was earliest). Laboratory values for potassium,
magnesium, and creatinine were recorded based on the closest
time to the BPA alert or medication order, but no longer than
24 hours before or after. The patient location was recorded
according to when the BPA alert fired or medication was
ordered, which were grouped into the following categories:
ICU, telemetry, obstetrics/gynecology floor (OB/Gyn), and
stepdown. ICU and stepdown were mutually exclusive, but
telemetry and OB/Gyn could include patients in the ICU or
stepdown as well (all ICU patients were also assigned to
telemetry).

Creation of Patient Clusters
In prior work, we examined the use of patient clusters to define
risk groups, in which we identified a cluster number of 4 to be
optimal [9]. To repeat this process, we first categorized age into
bins of under 40, 40-60, 60-80, and 80 years or older. Diagnoses
and medications were then one-hot encoded into individual
diagnoses and medications (present yes or no), and the top 500
most common medications and top 500 most common diagnoses
were kept for cluster analysis. The 500th most common
diagnosis was insomnia (n=554, 0.31%), and the 500th most
common medication was cholecalciferol (n=1585, 0.89%),
suggesting that clustering larger numbers of either was unlikely
to have a significant impact on cluster assignment. Encounters
were then clustered based on age category, sex, race, ethnicity,
inpatient location, and the 500 most common medications and
diagnoses. To identify the optimal cluster number, K-means
clustering with Hamming distance was applied for k=2-30
clusters on a sample of 10,000 subjects, from which the inertia
scores were calculated. Using the elbow method, we confirmed
that a cluster number of 4 provided reasonable separation of
patients (Figure S1A in Multimedia Appendix 1), which was
also validated using principal component analysis (Figure S1B
in Multimedia Appendix 1). We then calculated the cluster
number for the entire set of encounters among 4 groups.

Analysis
The primary outcome of the analysis was the presence of
diLQTS, with secondary outcomes of hospital duration and
inpatient, 3-month, 6-month, and 1-year mortality. For binary
outcomes, marginal logistic regression models were developed;
for hospital duration, marginal Poisson regression models were
used. Marginal models were fit using generalized estimating
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equations with exchangeable correlation within individual
patients. Unless otherwise specified, models were adjusted for
age, sex, race and ethnicity, location, cluster, pretreatment QTc,
and closest magnesium, potassium, and creatinine values (also
adjusted for timing related to medication administration), with
interaction terms for the culprit medication, alert firing, and
actual administration, where applicable, with a goal to examine
the impact of the alert and the medication on risk among those
in whom the medication was administered. Note that in several
instances, a medication was ordered or administered separate
from the intended alert system. To account for these
discrepancies, these situations were recoded as missing.
Specifically, the 441 encounters in which the order was placed
over 48 hours after the alert, the 346 encounters in which the
medication was administered 72 hours after the alert, the 1846
encounters where the order was signed without a record of
medication administration, and the 355 encounters in which the
medication was administered without an order were all recoded
as missing, and thus excluded from the analysis. For basic
comparisons of clusters, categorical variables were compared
using Chi-square test, and continuous variables were compared
using one-way ANOVA. Stata SE (version 18) was used for
statistical models. Scikit-learn (version 1.1.2; StataCorp) and
Python (version 3.9.7) were used for K-means clustering, inertia
scores, and principal component analysis.

Ethics Approval
The protocol was approved by the University of Colorado
Internal Review Board (COMIRB # 24-0200). Informed consent
was waived due to the use of de-identified data in this
retrospective, observational study. No images or other
identifiable information was used in this investigation. No
generative artificial intelligence was used for any portion of this
manuscript.

Results

The dataset included 102,847 patients with 178,097
hospitalizations (encounters). The range of the number of
hospitalizations per patient varied from 1 (N=63,165 patients)
to 52 (N=52 patients). Table 1 provides baseline characteristics
by cluster, as well as for the whole population of encounters.
All variables were significantly different across clusters. Table
S1 in Multimedia Appendix 1 provides the most common
diagnoses and medications in each cluster. Table S2 in
Multimedia Appendix 1 provides a list of the most different
diagnoses by cluster. Clusters 0 and 3 contained less severe
diagnoses and were associated with lower mortality than clusters
1 and 2 (Table 1).
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Table 1. Demographics and outcomes by cluster. Shown are the mean (SD) for continuous measures and the number and percentage for categorical
variables (of the cluster for each, respectively, as well as the total population). For each cluster, below each measure is a population-standardized measure
indicating deviation from the overall population. For continuous measures, these values are the standard mean difference (SMD=mean of cluster–population
mean/population standard deviation). For categorical measures, these values are the odds ratio (OR), calculated as the ratio of odds within the cluster
and for the overall population (note: odds=percentage/1–percentage). Statistical comparison across all variables had P<.001 (t test, continuous measures)
or P<.001 (Chi-square test, categorical variables).

Cluster

Total3210

178,097110,24912,98146,2588609Participants, n

59.19 (17.94)57.46 (18.42)56.71 (16.69)63.34 (16.57)62.73 (16.24)Age (years), mean (SD)

—a–0.10–0.14+0.23+0.20SMD

93,681 (52.60)60,435 (54.82)5660 (43.60)23,102 (49.94)4484 (52.09)Female sex, n (%)

—1.090.700.900.98OR

132,568 (74.44)79,913 (72.48)9165 (70.60)36,419 (78.73)7071 (82.1)White race, n (%)

—0.900.821.271.58OR

26,761 (15.03)17,660 (16.02)2255 (17.37)5778 (12.49)1068 (12.41)Hispanic ethnicity, n (%)

—1.081.190.810.80OR

35,011 (19.66)11,620 (10.54)8744 (67.36)13,108 (28.34)1539 (17.88)ICUb care, n (%)

—0.488.431.620.89OR

70,804 (39.76)30,712 (27.86)10,599 (81.65)25,923 (56.04)3570 (41.47)Telemetry, n (%)

—0.596.741.931.07OR

29,082 (16.33)10,591 (9.61)5156 (39.72)11,802 (25.51)1533 (17.81)Stepdown unit, n (%)

—0.543.381.761.11OR

1044 (0.59)787 (0.71)24 (0.18)178 (0.38)55 (0.64)OB/Gync, n (%)

—1.220.310.661.09OR

422.07 (57.77)421.55 (56.10)423.56 (65.87)422.92 (59.86)422.07 (54.02)Max preQTcd

—–0.01+0.03+0.010.00SMD

392.78 (42.20)393.66 (41.10)384.23 (46.00)392.08 (43.56)398.10 (40.79)Mean preQTce

—+0.02–0.20–0.02+0.13SMD

14,690 (8.25)8474 (7.7)1621 (12.5)3929 (8.5)666 (7.7)diLQTSf, n (%)

—0.931.591.030.93OR

14,963 (8.40)8267 (7.50)1884 (14.51)4278 (9.25)534 (6.20)Alert fired, n (%)

—0.881.851.110.72OR

5751 (3.23)1592 (1.44)1538 (11.85)2503 (5.41)118 (0.42)Inpatient mortality, n (%)

—0.444.031.710.42OR

12,260 (6.88)4605 (4.18)2292 (17.66)4995 (10.80)368 (4.27)3-Month mortality, n (%)

—0.592.901.640.60OR

14,946 (8.39)5962 (5.41)2582 (19.89)5909 (12.77)493 (5.73)6-Month mortality, n (%)

—0.622.711.600.66OR

18,363 (10.31)7775 (7.05)2917 (22.47)7020 (15.18)651 (7.56)1-Year mortality, n (%)

—0.662.521.560.71OR

aNot applicable.
bICU: intensive care unit.
cOB/Gyn: obstetrics/gynecology floor.
dMax preQTc: maximum QTc of all ECGs prior to drug order.
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eMean preQTc: mean QTc of all ECGs prior to drug order.
fdiLQTS: drug-induced QT prolongation on any ECG after drug order.

Response to Alerts for QT Prolongation
We then sought to assess the impact of providers’ responses to
the BPA alert. The BPA fired in 14,963 (8.4%) of 178,097 total
encounters at which a culprit medication was ordered, of which
8985 (60.13%) complied with the alert within the BPA (action
group), 5957 (39.87%) selected an action indicating
noncompliance, and 21 (0.14%) were missing a BPA response.
We also assessed compliance with the CDS by examining
whether the provider actually ordered the medication after the
BPA fired and whether it was then administered. Of the 14,963

alerts, the culprit medication was ordered and signed
(noncompliance) in 4816 (32.19%) encounters within 48 (mean
3.6, SD 8.7) hours of the alert. Of these 4816 encounters, in
3298, the culprit medication was administered within 72 (mean
8.6, SD 14.3) hours after the BPA alert.

Table 2 displays the association of patient characteristics with
BPA alert firing, action compliance, order compliance, and
administration compliance (after filtering out missing). The
proportion of medication orders in which the alert fired increased
with age and was more common in the ICU or telemetry floors,
as well as with certain medications, such as sotalol (Table 2).
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Table 2. Summary of responses to BPAa for drug-induced QT prolongation. Note that the percentage of BPA fired refers to what percentage of subjects
within that group had the BPA fire; the percentage of order and administration compliance refers to what percentage of BPAs that fired had the order
placed or medication administered, respectively. The difference in totals reflects missingness due to discrepancies in orders placed 48 hours after the
alert, administered 72 hours after the alert, ordered without administration, or administered without an electronic order.

Administration complied, n (%)Order complied, n (%)BPA complied, n (%)BPA fired, n (%)Participants, n

Age (years)

1169 (74.2)1019 (64.7)956 (60.7)1576 (5)31,301<40

2770 (77.7)2421 (67.9)2180 (61.1)3567 (7.2)49,46440-60

5065 (77.6)4350 (66.6)3842 (58.9)6528 (8.8)74,53260-80

2100 (79.7)1827 (69.3)1571 (59.6)2636 (11.6)22,800>80

Sex

5533 (76.8)4845 (67.2)4293 (59.6)7208 (7.7)93,681Female

5571 (78.5)4772 (67.2)4256 (60.0)7099 (8.4)84,416Male

Race

8420 (77.6)7303 (67.3)6387 (58.9)10,848 (8.2)132,568Caucasian

1150 (76.6)1000 (66.6)966 (64.4)1501 (8.7)17,264Black

1534 (78.3)1314 (67.1)1196 (61.1)1958 (6.9)28,265Other race

Ethnicity

1394 (76.6)1207 (66.3)1094 (60.1)1820 (6.8)26,761Hispanic

9710 (77.8)8410 (67.4)7455 (59.7)12,487 (8.3)151,336Non-Hispanic

Location

3079 (76.6)2609 (64.9)2244 (55.8)4021 (11.5)35,011ICUb

6027 (77.3)5200 (66.7)4601 (59)7793 (11)70,804Telemetry

9 (64.3)7 (50)8 (57.1)14 (1.3)1044OB/Gync

2709 (76.7)2353 (66.6)2048 (58)3534 (12.2)29,082Stepdown

Medications

1312 (83.8)1214 (77.6)1093 (69.8)1565 (10.1)15,428Azithromycin

286 (61.5)237 (51)76 (16.3)465 (12.7)3669Citalopram

217 (62.7)193 (55.8)205 (59.2)346 (5.3)6556Droperidol

353 (55.6)306 (48.2)87 (13.7)635 (12.8)4956Escitalopram

1994 (87.8)1622 (71.4)1397 (61.5)2271 (8.5)26,842Haloperidol

49 (52.1)42 (44.7)17 (18.1)94 (7.2)1299Hydroxychloroquine

775 (83.5)640 (69)562 (60.6)928 (9.7)9581Levofloxacin

101 (51.5)93 (47.4)51 (26)196 (12.4)1577Methadone

5863 (81.4)5152 (71.5)4997 (69.4)7202 (6.7)107,236Ondansetron

154 (25.5)118 (19.5)64 (10.6)605 (63.5)953Sotalol

Cluster

410 (81.7)392 (78.1)351 (69.9)502 (5.8)86090

3126 (77.3)2649 (65.5)2230 (55.1)4044 (8.7)46,2581

1338 (77.3)1122 (64.8)982 (56.7)1731 (13.3)12,9812

6230 (77.6)5454 (67.9)4986 (62.1)8030 (7.3)110,2493

11,104 (74.2)9617 (64.3)8549 (57.1)14,963 (84)178,097Total

aBPA: BestPractice Advisory.
bICU: intensive care unit.
cOB/Gyn: obstetrics and gynecology.

J Med Internet Res 2025 | vol. 27 | e68256 | p. 7https://www.jmir.org/2025/1/e68256
(page number not for citation purposes)

Trinkley et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Impact of Alert on Outcomes
Across all medications, the probability of diLQTS was 16.7%
(SD 0.6) if the BPA alert fired versus 8.5% (SD 0.1) if the alert
did not fire (OR 2.28, 95% CI 2.10-2.47; P<.001 for adjusted
model without interactions; Table S3A in Multimedia Appendix
1). Location made a difference in risk, as ICU patients in whom
the BPA fired were at lower risk for diLQTS than those without
the alert (OR 0.76, 95% CI 0.65-0.89; P<.001 for adjusted model
with ICU-alert interaction; Table S3B in Multimedia Appendix
1), as were patients on telemetry (OR 0.72, 95% CI 0.61-0.85;
P<.001 for adjusted model with telemetry-alert interaction;
Table S3C in Multimedia Appendix 1). Although individual
medications were individually associated with the risk of
diLQTS (Table S3A in Multimedia Appendix 1), there was no
evidence of a significant impact of the alert on diLQTS for any
specific medication (Table S3D in Multimedia Appendix 1) or
across all (P=.88). Hospitalization duration was significantly
longer in patients in whom the alert fired (incidence rate ratio
1.08, 95% CI 1.07-1.09; P<.001; Table S4 in Multimedia
Appendix 1). Inpatient mortality was significantly higher in
those who had the alert fire (OR 1.33, 95% CI 1.19-1.49;
P<.001; Table S5A in Multimedia Appendix 1), although we
did not note a difference in ICU (OR 0.92, 95% CI 0.70-1.21;
P=.56; Table S5B in Multimedia Appendix 1), telemetry (OR
0.83, 95% CI 0.59-1.18; P=.30; Table S5C in Multimedia
Appendix 1), or across medications (P=.30; Table S5D in
Multimedia Appendix 1). The alert was also associated with
increased 3-month (OR 1.30, 95% CI 1.20-1.42; P<.001; Table
S6 in Multimedia Appendix 1), 6-month (OR 1.22, 95% CI
1.14-1.31; P<.001; Table S7 in Multimedia Appendix 1), and
1-year mortality (OR 1.14, 95% CI 1.07-1.20; P<.001; Table
S8 in Multimedia Appendix 1).

Within the BPA, there was no evidence of an effect of provider
actions on the risk of diLQTS overall (P=.79; Table S9A in
Multimedia Appendix 1), or for any specific medication (Table
S9A in Multimedia Appendix 1), as well as no difference in

inpatient (P=.18; Table S9B in Multimedia Appendix 1),
3-month (P=.25; Table S9C in Multimedia Appendix 1),
6-month (P=.34; Table S9D in Multimedia Appendix 1), or
1-year (P=.21; Table S9E in Multimedia Appendix 1) mortality.
However, we did note a medication-specific impact on hospital
duration with provider compliance (P<.001; Table S9F in
Multimedia Appendix 1), with the biggest impact in those
treated with levofloxacin (IRR 1.50, 95% CI 1.39-1.62; P<.001;
Table S9F in Multimedia Appendix 1), indicating that hospital
duration was 50% longer in those patients where the provider
complied with recommendations from the alert. These results
suggest that alert response had either minimal clinical impact,
or resulted in longer hospital stay, across medications after
adjustment for other comorbidities.

CDS Implementation
Table 3 lists the number of medication orders before and after
the CDS was deployed for each medication. After adjustment
for age, sex, race and ethnicity, location, laboratory findings,
medication, and comorbidity clusters, there was no difference
in risk of diLQTS based on CDS deployment (OR 1.13, 95%
CI 0.94-1.36; P=.21; Table S10A in Multimedia Appendix 1),
and no evidence of effect for any individual medication (P=.98;
Table S10B in Multimedia Appendix 1). However, we did
identify an increased risk of inpatient mortality after CDS
deployment (OR 1.43, 95% CI 1.09-1.88; P=.01; Table S11 in
Multimedia Appendix 1), as well as increased 3-month (OR
1.86, 95% CI 1.49-2.33; P<.001; Table S12 in Multimedia
Appendix 1), 6-month (OR 1.79, 95% CI 1.46-2.19; P<.001;
Table S13 in Multimedia Appendix 1), and 1-year mortality
(OR 1.79, 95% CI 1.51-2.11; P<.001; Table S14 in Multimedia
Appendix 1). We also found that the hospital duration was
shorter among those without mortality during the admission (ie,
inpatient mortality) after CDS implementation than before (9.4,
SD 0.01 days post CDS versus 9.7, SD 0.8 days pre-CDS,
P<.001; Table S15 in Multimedia Appendix 1).

Table 3. Number of encounters before and after CDS roll-out.

Post-CDS, n (%)Pre-CDS, n (%)Medication

14,951 (96.91)477 (3.09)Azithromycin

3430 (93.49)239 (6.51)Citalopram

6477 (98.79)79 (1.21)Droperidol

4853 (97.92)103 (2.08)Escitalopram

26,815 (99.9)27 (0.1)Haloperidol

1213 (93.38)86 (6.62)Hydroxychloroquine

8942 (93.33)639 (6.67)Levofloxacin

1518 (96.26)59 (3.74)Methadone

104,003 (96.99)3233 (3.01)Ondansetron

940 (98.64)13 (1.36)Sotalol

173,142 (97.22)4955 (2.78)Total

J Med Internet Res 2025 | vol. 27 | e68256 | p. 8https://www.jmir.org/2025/1/e68256
(page number not for citation purposes)

Trinkley et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Impact of diLQTS on Outcomes
Among the entire population, 14,690 (8.25%) encounters had
an episode of diLQTS. In a marginal Poisson model adjusted
for age, sex, race and ethnicity, hospital location, cluster, and
medication (interaction with diLQTS), the average hospital
duration was higher among those with diLQTS compared with
those who did not have diLQTS (6.18 (SD 0.02) days versus
5.40 (SD 0.01) days, P<.001; Table S16A in Multimedia
Appendix 1). Within specific medications (Table S16A in
Multimedia Appendix 1), the presence of diLQTS was
associated with a statistically significant increase in hospital
duration for azithromycin (5.95, SD 0.05 days vs 5.15, SD 0.12
days, P<.001), droperidol (5.08, SD 0.11 days vs 3.77, SD 0.03
days, P<.001), escitalopram (6.15, SD 0.09 vs 5.61, SD 0.03
days; P=.004), haloperidol (6.60, SD 0.04 vs 5.85, SD 0.01;
P=.04), and sotalol (5.96, SD 0.02 vs 5.22, SD 0.01; P<.001),
and no different for citalopram (P=.23), hydroxychloroquine
(P=.37), levofloxacin (0.471), methadone (P=.15), and
ondansetron (P=.32); Table S16B in Multimedia Appendix 1.
diLQTS was not significantly associated with inpatient mortality
(P=.866; Table S17 in Multimedia Appendix 1), 3-month
mortality (P=.56; Table S18 in Multimedia Appendix 1),
6-month mortality (P=.62; Table S19 in Multimedia Appendix
1), or 1-year mortality (P=.27; Table S20 in Multimedia
Appendix 1). There was no evidence of an inpatient mortality
difference with diLQTS for any individual medication (Table
S17 in Multimedia Appendix 1), although certain medications
(hydroxychloroquine and ondansetron) were noted to have a
paradoxical decrease in 3-, 6-, or 1-year mortality with the
presence of diLQTS (see Tables S18-S20 in Multimedia
Appendix 1 for details).

Discussion

Principal Findings
In this large-scale, system-wide observational study, we found
that while the CDS system successfully identified patients at
higher risk of diLQTS, the system itself had no significant
impact on preventing diLQTS, regardless of how providers
responded to the alerts. We found that while the risk of diLQTS
itself predicted increased hospital duration, it did not have any
notable effect on mortality, including inpatient and follow-up
outpatient. We also found that, while hospital duration was
decreased with the deployment of the CDS tools, inpatient and
moderate-term outpatient mortality were actually increased after
the deployment of the CDS. Taken in their entirety, these results
suggest that despite accurately predicting patients at risk for
diLQTS, the CDS system deployed from this risk prediction
did not reduce the risk of diLQTS, its intended goal.

As noted in the Introduction, it is generally assumed that the
critical component of many CDS tools designed for risk
mitigation is their ability to accurately predict risk in individual
patients. Our group, and others, have proposed that the
integration of more sophisticated models, such as using deep
learning or other machine learning algorithms [9,10], or the
inclusion of additional predictors, such as genetic risk scores
[7], might improve the predictive accuracy of an alert system
for diLQTS. Yet, while these approaches could in theory

improve the accuracy of identifying patients at high risk of
diLQTS, our findings do not suggest that identification of
high-risk individuals was a key limitation of the current system.
Patients in whom the BPA fired had a significantly higher
(>3-fold) risk of diLQTS, including after adjustment for specific
medications and other clinical risk factors. While the specific
risk estimate could theoretically be improved with these
additional integrations, it does not seem that the present system
failed to identify patients at high risk.

And yet, despite the alert firing in appropriately high-risk
individuals, the impact on clinical outcomes, including diLQTS,
was not significantly impacted. There was no difference in
diLQTS before or after the CDS tools were implemented, and
provider response within or subsequent to the BPA did not
impact the risk of diLQTS. Mortality was actually increased
after the CDS tools were implemented, although we suspect
this finding to represent confounding by unmeasured patient or
treatment factors rather than a mechanism causally related to
the CDS itself (see below). Regardless, provider adherence to
the BPA, whether through actions within the alert, medication
orders, or administration of the culprit medication, did not
impact any hard clinical outcomes. In plain terms, we found no
evidence that the CDS used within the system was improving
patient safety or outcomes.

While numerous published studies have suggested the efficacy
of CDS to prevent diLQTS, closer inspection reveals that few
systematically evaluated the outcome of diLQTS itself in their
evaluation. Gallo et al [1] examined a CDS using the modified
Tisdale QT risk score and noted an impact on provider actions,
although the impact on diLQTS was not evaluated. Tisdale et
al [4] also examine the risk score for diLQTS in a CDS, and
noted a change in prescriber patterns, but did not assess diLQTS
[5]. Other groups [12] have performed similar evaluations of
CDS for diLQTS focused on provider actions without an
examination of diLQTS itself, including the CDS presently
deployed within our system [13,14]. Such a surrogate measure
of CDS effectiveness is common, and while it is not
unreasonable to consider provider actions as a surrogate for
clinical outcomes, these cases are a reminder that there are
limitations to drawing inference from surrogate outcomes alone
[15], a finding that was suggested in our prior work [11] and is
confirmed in this investigation.

In terms of the evaluation of CDS systems broadly, it cannot
be overstated how our findings highlight the need to use
additional methods and frameworks beyond a simple inspection
of discrimination and calibration. Specifically, there is a
well-established field of implementation science that includes
methods such as the RE-AIM (Reach, Effectiveness, Adoption,
Implementation, Maintenance) framework [16,17], which
includes activities seeking an evaluation of stakeholder
engagement and methods to address barriers to implementation.
In addition to the inclusion of a formal process to categorize
and process user feedback, these methods also frequently use
experts from behavioral psychology to understand the context
in which a provider might choose to ignore an alert or situations
in which the alert may not even have been acknowledged in the
first place. Such efforts might have highlighted the relatively
low rate of compliance with the QT alert and potentially led to
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improvements in design and activation prior to noting an overall
lack of clinical impact. These insights will serve as a guide in
future work by our team to use implementation science methods
to refine and improve the QT CDS.

There are several key limitations to this investigation, the
predominant being that the impact of the CDS was studied using
observational data rather than through a prospective clinical
trial. Like any observational study, there was a high risk of
confounding, even with the inclusion of clinical risk factors
such as other medications, diagnoses, or patient location (a
marker of disease severity). We are skeptical that the CDS itself
was likely to have directly increased patient mortality as we
identified and suspect that this finding is one example of this
limitation. However, this limitation highlights a growing
problem with CDS tool development and implementation, which
is that many tools are inconsistently evaluated and rarely
evaluated prospectively prior to widespread implementation.
Particularly for a condition like diLQTS, the argument is made
that since prospective studies would likely be underpowered to
detect a meaningful difference in clinical outcomes, and since
the downsides of simply “alerting” providers that a patient is
high risk would seem negligible in contrast with a new
medication or procedure, then it is sufficient to forego formal
prospective testing as long as the CDS “seems reasonable.”
However, with increasing attention to the challenges of alert
fatigue [18,19], these assumptions do not seem sufficient to
justify empirical implementation of these alert systems.
Especially in situations where the frequency of alerts is
anticipated to be high, a plan for evaluation at a defined period
is key to tackling issues that could result in alert fatigue.

Limitations
Some additional considerations of these results should also be
identified. First, the alerts studied were all applied for inpatients,
which might indicate that providers in general were more aware
of risks of diLQTS and other adverse outcomes to a greater
degree than in prescribing medications for outpatients.
Interestingly, patients in the ICU and on telemetry were less
likely to have diLQTS if the alert fired, suggesting that if they
were in a setting where medications could be titrated or
monitored more closely, then the risks could be mitigated. In
contrast, one could surmise that a CDS tool deployed in the
outpatient setting could have a greater impact, as providers may
be more likely to make changes to medications to avoid diLQTS
in a setting where monitoring is less available. The CDS in our

system has also been deployed in the outpatient setting, and we
plan to perform a similar investigation in that population as well
in future studies.

Second, a potential confounder of outcome adjudication in this
study could have been increased surveillance of ECG monitoring
after the alert fired, a finding noted by Gallo et al [1], as well.
In this case, those patients in whom the BPA fired may have
been more likely to have follow-up ECGs where diLQTS could
have been diagnosed. We did not have a simple metric to assess
enhanced surveillance following the alert, which is relevant
since, particularly for medications where there was no alternative
available, this would be the recommended action. Some
medications, such as sotalol [20], actually require ECGs to be
performed after each dose to monitor for diLQTS, and our
finding that this medication carried a high risk of diLQTS could
potentially be explained by the increased monitoring (more
ECGs) among these patients.

Third, the actual risk of torsade de pointes, even among patients
with diLQTS, is still quite low, and although the adopted
definition of diLQTS is based on corrected QT intervals greater
than 500 milliseconds, it is possible that a mortality risk of
diLQTS (in the form of TdP) is not present unless the QT
interval is much longer or if there are additional factors such as
sinus pauses or severe bradycardia immediately preceding the
TdP event. Further, there are several well-established methods
to calculate the corrected QT interval, such as those of Bazett
[21] or Sagie [22], which could have a differential impact on
the prediction of TdP. Vandenberk et al [23] noted that
Fridericia, as used in this study, is preferred over Bazett’s for
appropriate correction to predict mortality, and although we do
not suspect that our results would be heavily influenced based
on the method of correction, we acknowledge that the
population-level definition of diLQTS may not reflect the
individual risk of TdP; other methods to find the appropriate
degree of QT prolongation leading to TdP may be needed to
appropriately evaluate the impact of these tools.

Conclusions
In conclusion, we found that although a simple, rule-based
algorithm can identify patients at high risk of diLQTS, a CDS
tool created from this algorithm did not demonstrate a
system-wide change in risk of diLQTS or other clinical
outcomes. We believe these findings provide support for the
need for evaluation and ideally randomized, comparative trials
of CDS tools when possible.
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