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Abstract

Background: Clinical reasoning (CR) is an essential skill; yet, physicians often receive limited feedback. Artificial intelligence
holds promise to fill this gap.

Objective: We report the development of named entity recognition (NER), logic-based and large language model (LLM)–based
assessments of CR documentation in the electronic health record across 2 institutions (New York University Grossman School
of Medicine [NYU] and University of Cincinnati College of Medicine [UC]).

Methods: The note corpus consisted of internal medicine resident admission notes (retrospective set: July 2020-December
2021, n=700 NYU and 450 UC notes and prospective validation set: July 2023-December 2023, n=155 NYU and 92 UC notes).
Clinicians rated CR documentation quality in each note using a previously validated tool (Revised-IDEA), on 3-point scales
across 2 domains: differential diagnosis (D0, D1, and D2) and explanation of reasoning, (EA0, EA1, and EA2). At NYU, the
retrospective set was annotated for NER for 5 entities (diagnosis, diagnostic category, prioritization of diagnosis language, data,
and linkage terms). Models were developed using different artificial intelligence approaches, including NER, logic-based model:
a large word vector model (scispaCy en_core_sci_lg) with model weights adjusted with backpropagation from annotations,
developed at NYU with external validation at UC, NYUTron LLM: an NYU internal 110 million parameter LLM pretrained on
7.25 million clinical notes, only validated at NYU, and GatorTron LLM: an open source 345 million parameter LLM pretrained
on 82 billion words of clinical text, fined tuned on NYU retrospective sets, then externally validated and further fine-tuned at
UC. Model performance was assessed in the prospective sets with F1-scores for the NER, logic-based model and area under the
receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC) for the LLMs.

Results: At NYU, the NYUTron LLM performed best: the D0 and D2 models had AUROC/AUPRC 0.87/0.79 and 0.89/0.86,
respectively. The D1, EA0, and EA1 models had insufficient performance for implementation (AUROC range 0.57-0.80, AUPRC
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range 0.33-0.63). For the D1 classification, the approach pivoted to a stepwise approach taking advantage of the more performant
D0 and D2 models. For the EA model, the approach pivoted to a binary EA2 model (ie, EA2 vs not EA2) with excellent
performance, AUROC/AUPRC 0.85/ 0.80. At UC, the NER, D-logic–based model was the best performing D model (F1-scores
0.80, 0.74, and 0.80 for D0, D1, D2, respectively. The GatorTron LLM performed best for EA2 scores AUROC/AUPRC 0.75/
0.69.

Conclusions: This is the first multi-institutional study to apply LLMs for assessing CR documentation in the electronic health
record. Such tools can enhance feedback on CR. Lessons learned by implementing these models at distinct institutions support
the generalizability of this approach.

(J Med Internet Res 2025;27:e67967) doi: 10.2196/67967
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Introduction

Clinical reasoning (CR) is a fundamental skill that requires
incorporating vast amounts of information into a prioritized
differential diagnosis and treatment plan and therefore crucial
that trainees are given feedback to improve [1]. Documentation
in the electronic health record (EHR) can provide this
opportunity. Furthermore, poor documentation can reflect lack
of refined CR and has been hypothesized to be linked to
diagnostic errors [2-4]. There are established human ratings
tools to provide feedback on CR documentation such as the
Revised-IDEA tool, a rubric that facilitates giving feedback in
4 essential domains of CR, including interpretive summary,
differential diagnosis, explanation of lead diagnosis, and
explanation of alternative diagnoses [5]. However, feedback
provided to trainees can still be limited due to faculty having
different standards of what constitutes high quality CR
documentation and limited time for feedback in the fast-paced
clinical environment [5-7].

Machine learning (ML), natural language processing (NLP),
and other artificial intelligence (AI) technologies have emerged
as avenues to augment feedback [8-12]. NLP has been used to
automate the scoring of documentation in simulated scenarios
[13-16]. AI-augmented assessment of CR documentation has
also been implemented in clinical environments; we have
previously reported on an NLP-based supervised ML model
that provides feedback on internal medicine (IM) residents CR
documentation [17]. However, this model was developed using
earlier technologies and only provides binary feedback.
Similarly, Feldman et al [18] published the development of a
supervised ML model that provides binary feedback on CR
documentation (quality of prioritized differential in progress
notes).

The more recent advances of generative AI (GAI) and large
language models (LLMs) have expanded the potential of AI as
a powerful tool to augment feedback [19,20]. There is a building
body of literature on the use of LLMs in CR tasks demonstrating
that AI outperforms humans [21-25]. Among these studies is a
recent article by Goh et al [21] concluding that LLMs
outperformed humans and humans plus LLMs on clinical
vignettes as assessed by a standardized rubric of diagnostic
performance. In terms of use of LLMs for assessment and
feedback on CR, Çiçek et al [26] published on the use of

ChatGPT versus expert written feedback on CR questions
showing mixed reception from the medical students receiving
the feedback. Finally, Jamieson et al [27] used AI to provide
feedback on medical student Objective Structured Clinical
Examination postencounter notes, an important method of
assessing CR, and showed high agreement between AI and
expert human ratings. However, these studies are all conducted
with curated medical data, at single institutions, and do not
focus on assessment of human reasoning but on performance
of LLM reasoning as compared with humans.

Navigating the use of LLMs with EHR data (vs curated data)
can be much more complicated. There are the challenges of
accessing the right data from the chart, a higher burden of
accuracy, privacy issues, and variability in EHRs [28-30]. In
addition, initial studies have shown LLMs do not perform as
well digesting the complexity of information in the EHR to
make accurate diagnoses [30]. Finally, while the performance
of LLMs on CR tasks is promising, it is far from sufficient to
replace humans and it is essential that we continue to provide
feedback on our learners’CR [19,30,31]. AI-based tools remain
an important strategy to enhance the amount of feedback we
provide [12].

Here, we report on an expansion of our previous work and
describe the development across 2 institutions of a named entity
recognition (NER), logic-based assessment and LLM-based
assessments of IM resident CR documentation in the EHR that
predicts the quality of CR across 2 domains using the
Revised-IDEA tool.

Methods

Setting and Study Population
We conducted this study at 2 institutions, New York University
Grossman School of Medicine (NYU) and University of
Cincinnati College of Medicine (UC). NYU is a northeastern
academic medical center with multiple hospital sites; the NYU
IM residency program has 2 resident populations with separate
recruitment processes and clinical rotations at different hospitals
that use the same EHR, NYU Langone Health Manhattan and
NYU Langone Health Brooklyn. NYU residents also rotate at
2 other sites with distinct EHRs not included in this study. In
terms of technical resources, NYU has the infrastructure of both
the Institute for Innovations in Medical Education which is a
multidisciplinary team of clinician educators, data scientists,
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informaticians, and developers who apply the science of
education and informatics to transform teaching, learning,
evaluation, and assessment at NYU and the Division of Applied
AI Technologies which focuses on using data and modeling to
predict health outcomes across NYU Langone Health [32,33].
In addition, both education and EHR data are stored and easily
accessible through a central education data warehouse and there
is access to a distributed-memory, high-performing computing
cluster [34,35].

UC is a midwestern academic medical center within which IM
residents rotate at University of Cincinnati Medical Center
(UCMC) and the Veterans Affairs Medical Center; only notes
written at UCMC were included in the study. In terms of
technical resources, UC has the Department of Biostatistics,
Health Informatics, and Data Sciences (BHIDS) that enables
the UC academic health care enterprise to make better use of
biomedical data and technology for new discoveries, innovative
science, and improved health care [36]. Although UC has access

to many data sources across the health system, medical school
and other education programs, currently there is not a centralized
database for education and EHR data like at NYU. In addition,
UC has some access to high-performing computing resources,
but NYU has a more developed infrastructure for using these
tools for both clinical and educational use than at UC.

At each site 2 note sets were retrieved from an integrated EHR
(Epic Systems): (1) retrospective dataset comprised of IM
resident admission notes from July 2020-December 2021 (n=700
NYU notes, n=450 UC notes) and (2) prospective validation
dataset from July 2023-December 2023 (n=155 NYU notes,
n=92 UC notes; Figure 1). These time periods were selected to
ensure a sufficient range of diagnoses and residents were
represented and that COVID-19 admissions were not
overrepresented. The datasets at NYU were larger because the
initial plan was for primary development and model fine-tuning
occurring at this institution.
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Figure 1. Overview of the development and validation across 2 institutions of named entity recognition: logic-based assessment and large language
model–based assessments of resident clinical reasoning documentation in the electronic health record. AUROC: area under the precision-recall curve;
AURPC: area under the precision-recall curve; CV: cross-validation; LLM: large language model; NER: named entity recognition; NYU: New York
University Grossman School of Medicine; UC: University of Cincinnati College of Medicine.

Human Note Rating
We used the DEA components of the Revised-IDEA tool as our
human rating gold standard [5]. We maintained the original D
(differential diagnosis) score whether a note has an explicitly
prioritized differential diagnosis with specific diagnoses (eg,
not diagnostic categories such as cardiac), scored as D0, D1, or

D2. We discovered early in training experiments that discerning
the E (explanation of lead diagnosis) and A (alternative
diagnosis explained) would be difficult with available AI
models, and iterated to create an overall explanation of reasoning
EA score combining the E and A components (ie, EA0, EA1,
or EA2; Figure 1; Multimedia Appendix 1). In total, 6 faculty
(clinician educators with expertise in CR, assessment, and
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psychometrics), 1 resident, and 1 medical student reviewed
admission notes to create the new EA score.

On the NYU retrospective dataset, raters also annotated spans
of text using Prodigy (an annotation tool for creating training
data for ML models). Annotations included 5 entity types for
NER, 3 components of the D score (diagnosis [Dx], diagnostic
category [DC], prioritization of diagnosis language [Prior]) and
2 components of the EA score (data [Data] and linkage terms
[Link]).

To demonstrate interrater reliability, 2 raters labeled 76 notes
from the NYU retrospective set for NER, D, and EA scores.
For the UC notes, 1 rater from NYU and 2 raters from UC rated
20 notes for D and EA scores. Intraclass correlation (ICC) using
a 2-way ANOVA with mixed effects was calculated to assess
rater consistency. The remainder of the notes at each institution
were rated by 1 rater for D and EA scores. The remainder of
the retrospective set at NYU was also rated by 1 rater for NER.

Note Preprocessing
We aimed to isolate the section of the assessment that
concentrates on the differential diagnosis and the explanation
of reasoning for the primary presenting problem. We iterated
on previous truncation strategies outlined previously by Schaye
et al [17] and different approaches were required at each
institution given different note writing styles (details in
Multimedia Appendix 2).

Model Development
Model training occurred with several approaches, NYU
development of NER, logic-based model with subsequent
external validation at UC, NYU fine tune training of LLM
NYUTron [37], NYU fine-tune training of LLM GatorTron
[38], UC external validation and fine tune training of NYU
fine-tuned GatorTron, and UC fine tune training of GatorTron.
We were not able to validate NYUTron at UC pending contract
execution for data sharing and will ideally do so in the future.

The selection of these model architectures was driven by their
proven effectiveness in handling clinical text data and their
ability to capture complex semantic relationships [37-39]. The
NER, logic-based model was chosen for its capability to
leverage domain-specific knowledge and predefined rules, which
is particularly useful for structured data extraction in clinical
settings. On the other hand, the LLMs were selected for their
advanced contextual understanding and scalability, making
them suitable for more nuanced classification tasks.

NER, Logic-Based Model Approach
We used a large, NLP word embedding model trained on
scientific texts from the scispaCy library (en_core_sci_lg) with
more than 700k vocabulary and 600k word vectors [39]. Word
embeddings are a type of word representation that allows words
to be represented as vectors in a continuous vector space,
capturing semantic meanings. We adjusted model weights with
backpropagation (a method used to minimize the error in
predictions by adjusting the weights of the model) using the
human-annotated labels of the 5 entity types (Dx, DC, Prior,
Data, and Link).

We calculated the predicted D scores (ie, D0, D1, and D2) using
logic-based relationships between the extracted entities and the
rating scale: D0, fewer than 2 unique diagnoses (Dx entity
counts); D2, 2 unique diagnoses (Dx entity counts); and explicit
prioritization (Prior entity counts); D1, everything else. We
attempted ML models to predict EA score from the named
entities; however, due to poor model performance, we
abandoned further attempts to develop NER, logic-based EA
scores.

In order to provide an impartial and dependable evaluation of
the model’s performance, we used 10-fold cross-validation (a
technique where the data is divided into ten parts, and the model
is trained and validated 10 times, each time using a different
part as the validation set and the remaining parts as the training
set). We calculated the Type NER (which demands some overlap
between the system tagged entity and the gold standard
annotation) evaluation metric, as suggested in SemEval-2013
Task 9, at each k-fold (details in Multimedia Appendix 3) [40].
We report F1-score over 10-fold runs for each D score entity
type (Dx, DC, and Prior) and D score prediction. The F1-score
is crucial for evaluating NER-based models because it balances
precision and recall (precision measures the accuracy of the
positive predictions, while recall measures the ability to find
all relevant instances), providing a comprehensive measure of
a model’s ability to correctly identify entities while minimizing
both false positives and false negatives. This balance is essential
for handling the often-imbalanced nature of entity distributions
in text, ensuring a more accurate assessment of model
performance. We shared the best performing NER, logic-based
D model with UC through a docker container and externally
validated the model on the UC retrospective set.

LLM Approaches
NYUTron, developed by NYU, is a BERT (Bidirectional
Encoder Representation with Transformer)-like LLM with about
110 million parameters that has been pretrained on 7.25 million
clinical notes (4.1 billion words, notes through May 2020) [37].
We fine-tuned the model to classify D and EA scores. We
applied a 1-versus-rest approach, which resulted in the
development and testing of 6 distinct models, each
corresponding to a different D and EA score category (ie, D0,
D1, D2, EA0, EA1, and EA2 models). However, EA0 and EA1
models did not have adequate performance so we pivoted our
approach to create a single binary EA2 model (ie, EA2 vs not
EA2). To evaluate model performance, we used 10-fold
cross-validation, with area under the receiver operating
characteristic curve (AUROC) and area under the
precision-recall curve (AUPRC) averaged over the 10 runs. We
chose AUROC and AUPRC as our primary metrics for all
LLM-based models because these metrics are favored over
F-scores for binary classification tasks, particularly with
imbalanced datasets. They assess model performance across all
possible thresholds, offering a more detailed understanding of
trade-offs between true positives, false positives, and
precision-recall dynamics, thereby aiding in the identification
of the optimal decision-making threshold, which a single F-score
cannot provide.
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Unlike NYUTron, GatorTron is an open source LLM with 345
million parameters that was pretrained on over 82 billion words
of deidentified clinical text [38]. To enhance generalizability
using an open source LLM, the same experiments described
above for NYUTron were taken with GatorTron at NYU.

The NYU fine-tuned GatorTron EA2 model was shared with
UC, which conducted external validation, and further fine-tuned
following a similar process. Due to the smaller set of notes and
hardware limitations, particularly a relatively small Video
Random Access Memory size of 16GB, some modifications
were applied. A runtime text augmentation was implemented
during training with the following settings: 15 words of synonym
replacement, random word insertion, and random swap each,
and finally, a random word deletion of 15% probability. Finally,
we applied random minority oversampling using inverse class
frequency during training.[41] In addition, given these
limitations, we did not attempt to fine-tune the 3 separate NYU
fine-tuned GatorTron D models at UC. Instead, we fine-tuned
the original GatorTron model to predict all 3 possible D Scores
with a single model at UC using the same training process and
hyperparameters as the EA2 model. Further details on model
hyperparameters and packages used at NYU and UC can be
found in Multimedia Appendix 4.

Prospective Validation
As a final step of validation, we ran each of the best performing
models selected for implementation on the site’s prospective

validation sets and assessed performance using F1-score for the
NER, logic-based model and AUROC and AUPRC for the LLM
models.

Ethical Considerations
The study was approved by the NYU and UC institutional
review boards, (i19-00280) and (2022-058), respectively. A
waiver of consent was obtained for retrospective chart reviews.
All retrospective data were anonymized when possible and
appropriate measures taken to protect participant information.
We followed the reporting guidelines by Klement and El Emam
[42] for prognostic and diagnostic machine learning studies.

Results

Human Note Rating
At NYU, ICC was 0.83 (95% CI 0.74-0.89) and 0.77 (95% CI
0.65-0.85) for the D and EA scores, respectively, indicating
substantial interrater agreement. Interannotator agreement across
all 5 entity types averaged F1-score=0.81 (range 0.71-0.87 by
entity type), indicating strong annotator overlap (Figure 2). At
UC, ICC was 0.83 (95% CI 0.68-0.92) and 0.84 (95% CI
0.70-0.93) for the D and EA scores, respectively.

In both datasets, at each institution there was a range of
human-rated D and EA scores, diagnoses, and patient
demographics mitigating concerns of potential bias in the
selection of datasets (Table 1).

Figure 2. Example note (modified to protect patient privacy) with human rating of D and EA scores and annotation for named entity recognition of 5
entity types: 3 components of the D score (diagnosis [Dx], diagnostic category (DC], and prioritization of diagnosis language [Prior]) and 2 components
of the EA score (data [Data] and linkage terms [Link]).
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Table 1. Descriptive statistics of human-rated note quality using the Revised-DEA tool and patient characteristics in the retrospective and prospective

note sets at NYUa and UCb.

UC prospective note
set (n=92)

UC retrospective note
set (n=450)

NYU prospective note
set (n=155)

NYU retrospective note
set (n=700)

Characteristics

D score n (%)

17 (18.5)120 (26.7)55 (35.5)109 (15.6)0

31 (33.7)155 (34.4)46 (29.7)154 (22)1

44 (47.8)175 (38.9)54 (34.8)437 (62.4)2

E score n (%)

27 (29.3)96 (21.3)19 (12.3)73 (10.4)0

21 (22.8)171 (38)74 (47.7)255 (36.4)1

43 (46.7)183 (40.7)62 (40)372 (53.1)2

Patient age (years), n (%)

25 (27.2)147 (32.7)29 (18.7)142 (20.3)≤ 54

37 (40.2)184 (40.9)35 (22.6)181 (25.9)55-68

20 (21.7)86 (19.1)45 (29)236 (33.7)69-80

10 (10.9)33 (7.3)33 (21.3)141 (20.1)≥ 81

0 (0)0 (0)13 (8.4)0 (0)Not answered

Patient sex, n (%)

52 (56.5)215 (47.8)67 (43.2)340 (48.6)Female

40 (43.5)234 (52)75 (48.4)360 (51.4)Male

0 (0)1 (0.2)13 (8.4)0 (0)Not answered

Primary diagnosis by ICD-10c, n (%)

12 (12.6)42 (8.8)38 (24.5)134 (19.1)Cardiac

4 (4.2)18 (3.8)3 (1.9)13 (1.9)Dermatologic

3 (3.2)27 (5.7)7 (4.5)26 (3.7)Endocrine

8 (8.4)56 (11.8)15 (9.7)68 (9.7)Gastrointestinal

10 (10.5)39 (8.2)14 (9)49 (7)Genitourinary

5 (5.3)35 (7.4)7 (4.5)61 (8.7)Hematologic or oncologic

2 (2.1)10 (2.1)21 (13.5)117 (16.7)Infectious

7 (7.4)17 (3.6)3 (1.9)19 (2.7)Musculoskeletal

4 (4.2)12 (2.5)1 (0.6)21 (3.)Neurologic

30 (31.6)149 (31.4)11 (7.1)54 (7.7)Other

2 (2.1)13 (2.7)7 (4.5)5 (0.7)Psychiatric

7 (7.4)47 (9.9)10 (6.5)72 (10.3)Pulmonary

1 (1.1)10 (2.1)18 (11.6)61 (8.7)Not answered

aNYU: New York University Grossman School of Medicine.
bUC: University of Cincinnati College of Medicine.
c ICD-10: International Statistical Classification of Diseases, Tenth Revision.

Model Performance

NER Logic-Based Model
In the NYU retrospective dataset, the NER F1-score for the
entity types used to compute the D score (Dx, DC, and Prior)
was 0.66. The NER model performed the best in extracting Prior

and Dx entities with an F1-score of 0.75 and 0.68, respectively,
but struggled with DC entities, achieving a 0.37 F1-score.

The NER, D logic-based model performed well at both sites
with F1-scores of 0.83, 0.78, and 0.75 for D0, D1, and D2 scores,
respectively at NYU and F1-scores of 0.75, 0.71, 0.76 for D0,
D1, D2 scores, respectively at UC. At UC, the NER,
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D-logic–based model was the best performing D model overall
selected for implementation and run on the UC prospective
validation set with F1-scores of 0.80, 0.74, and 0.80 for D0, D1,
D2 scores, respectively.

LLM-Based Models
At NYU, NYUTron overall had better D and EA model
performance on the retrospective set than GatorTron and were
the best performing models overall (Table 2). However, while
the D0 and D2 NYUTron models performed well, the D1 model
was not performant on the retrospective set (AUROC 0.57, 95%
CI 0.53-0.69; AUPRC 0.33, 95% CI 0.26-0.43) and therefore
was not suitable for implementation. As such, a stepwise
approach was taken for the D1 model by taking advantage of
the more performant D0 and D2 models (Table 2). The D0 and
D2 NYUTron models had excellent performance on the
prospective dataset as follows: D0 model, AUROC 0.87 and

AUPRC 0.79 and D2 model, AUROC 0.89 and AUPRC 0.86
(Figure 3).

Both the NYUTron EA0 and EA1 models had insufficient
performance for implementation therefore the approach pivoted
to create a single binary EA model, EA2 vs not EA2 (ie, EA0
or EA1; Table 2). The binary NYUTron EA2 model achieved
sufficient performance for implementation with an AUROC
0.85 and AUPRC 0.80 on the prospective dataset (Figure 4).

In external validation at UC, the NER, D logic model performed
better than the D GatorTron models and were the D models
implemented as described above (Table 2). The GatorTron EA2
model did reach sufficient performance for subsequent
prospective validation with an AUROC 0.75 and AUPRC 0.69
(Table 2 and Figure 5).

A final step in optimizing performance was selecting thresholds
for all LLM models implemented (details in Multimedia
Appendix 5).
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Table 2. Large Language Model (LLM) performance on retrospective note sets for all NYUTron and GatorTron experiments classifying differential

diagnosis and explanation of reasoning scores in resident admission notes at NYUa and UCb.

AUPRCe retrospective validation,
(95% CI)

AUROCd retrospective validation,
(95% CI)

D/EA score classificationSiteLLMc

0.72 (0.58-0.76)0.91 (0.85-0.93)D0NYUNYUTron

0.33 (0.26-0.43)0.57 (0.53-0.69)D1NYUNYUTron

0.89 (0.85-0.93)0.81 (0.8-0.87)D2NYUNYUTron

——gD1 stepwise approachfNYUNYUTron

0.36 (0.23-0.47)0.83 (0.72-0.86)EA0NYUNYUTron

0.63 (0.54-0.68)0.74 (0.67-0.78)EA1NYUNYUTron

0.84 (0.81-0.89)0.84 (0.8-0.87)EA2NYUNYUTron

0.82 (0.8-0.87)0.84 (0.81-0.85)EA2 binary modelhNYUNYUTron

0.72 (0.48-0.75)0.92 (0.84-0.94)D0NYUGatorTron

0.31(0.24-0.37)0.54 (0.5-0.59)D1NYUGatorTron

0.80 (0.82-0.92)0.73 (0.78-0.85)D2NYUGatorTron

——D1 stepwise approachfNYUGatorTron

0.51 (0.23-0.79)0.75 (0.54-0.96)D0UCGatorTron

0.46 (0.22-0.7)0.61 (0.44-0.78)D1UCGatorTron

0.63 (0.46-0.79)0.72 (0.61-0.83)D2UCGatorTron

0.42 (0.25-0.53)0.80 (0.73-0.89)EA0NYUGatorTron

0.63 (0.48-0.67)0.75 (0.62-0.78)EA1NYUGatorTron

0.83 (0.79-0.9)0.83 (0.76-0.87)EA2NYUGatorTron

0.80 (0.79-0.9)0.81 (0.76-0.87)EA2 binary modelhNYUGatorTron

——EA0UCGatorTron

——EA1UCGatorTron

——EA2UCGatorTron

0.63 (0.41-0.85)0.72 (0.51-0.93)EA2 binary modelhUCGatorTron

aNYU: New York University Grossman School of Medicine.
bUC: University of Cincinnati College of Medicine.
cLLM: large language model.
dAUROC: area under the receiver operating characteristic curve.
eAUPRC: area under the precision-recall curve.
fThe D1 model ultimately did not have sufficient performance for implementation while the D0 and D2 had excellent performance so a stepwise approach
was taken for the D1 score: (1) If D0 model predicts D=0, then D=0, (2) If D2 model predicts D=2, then D=2, and (3) Else D=1. The NYU D1 Stepwise
Approach achieved precision of 0.79 while the GatorTron D1 Stepwise Approach achieved precision of 0.73.
gNot applicable.
hBoth the EA0 and EA1 models had insufficient performance for implementation therefore the approach pivoted to create a single EA model EA2 vs
not EA2.
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Figure 3. Large language model performance on prospective note sets classifying differential diagnosis (D0 and D2) in resident admission notes for
best performing D models selected for implementation at New York University Grossman School of Medicine. AUC: area under the curve; FPR: false
positive rate; NYU: New York University; PPV: positive predictive value; ROC: receiver operating characteristic; TPR: true positive rate.

Figure 4. Large language model performance on prospective note sets classifying explanation of reasoning (EA2) in resident admission notes for best
performing EA models selected for implementation at New York University Grossman School of Medicine. AUC: area under the curve; FPR: false
positive rate; NYU: New York University; PPV: positive predictive value; ROC: receiver operating characteristic; TPR: true positive rate.
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Figure 5. Large language model performance on prospective note sets classifying explanation of reasoning (EA2) in resident admission notes for best
performing EA models selected for implementation at University of Cincinnati College of Medicine. AUC: area under the curve; FPR: false positive
rate; PPV: positive predictive value; ROC: receiver operating characteristic; TPR: true positive rate; UC: University of Cincinnati.

Discussion

Principal Findings
We developed both NER, logic-based and LLM-based
assessments of CR documentation in the EHR across 2
institutions with different residency training cultures,
expectations for documentation, and technical resources. This
builds upon previous work on a supervised ML model of Schaye
et al [17] to assess CR documentation, generating more specific
feedback across 2 domains of the Revised-IDEA tool. We
developed high performing D models that can provide feedback
on a 3-point scale and an EA model that can provide feedback
on a 2-point scale with comparable performance with our earlier
model that provides only binary feedback. Compared with our
previous model, which used logistic regression and cTAKES
for binary classification of CR documentation quality, our
current models leverage advanced NLP techniques, including
LLMs, and provides more granular feedback. In addition, the
current models were designed at 1 institution and then externally
validated at a second institution, enhancing their generalizability
and robustness. To our knowledge this is the first study to apply
LLMs to human CR in EHR data across institutions (rather than
LLM reasoning or human reasoning on curated medical data)
[17,18,21-24,26,27,30]. Furthermore, despite the advances in
LLMs, these technologies are not yet performant to replace
human reasoning. AI-based tools such as the ones we developed
can help ensure we are continuing to give our trainees feedback
on the essential human skill of CR [12,19,30,31].

While we were able to navigate successfully some of the
challenges of working with LLMs and EHR data such as
accessing the right data from the chart and privacy issues
[28-30], we were not able to achieve sufficient performance of
all the models at both sites. The performance differences
between NYUTron, GatorTron, and the NER, logic-based model
can be attributed to several factors. NYUTron, developed

specifically on NYU EHR data, likely benefited from being
fine-tuned on a dataset closely aligned with its pretraining data,
which may have contributed to its superior performance at NYU.
This alignment could have allowed NYUTron to better capture
the nuances and specificities of the documentation style and
clinical language used at NYU. In contrast, GatorTron, while
being a robust open-source LLM with a larger parameter set,
may not have been as finely attuned to the specific
documentation styles at NYU or UC, leading to relatively lower
performance. The NER, logic-based model, leveraging
domain-specific knowledge and predefined rules, demonstrated
strong performance in structured data extraction tasks,
particularly at UC, where it outperformed the GatorTron models
for D score predictions. This suggests that for certain structured
tasks, smaller, more focused NLP models can sometimes be
more effective than larger, more generalized LLMs. In addition,
the annotation processes and the quality of the training data,
including the consistency and accuracy of human annotations,
likely played a significant role in influencing model
performance.

It might not always be the newest technology needed to solve
the task at hand and comparison of performance of different
technologies can be a helpful strategy. Of note when this work
initially began, GAI models such as ChatGPT were not readily
available in HIPAA (Health Insurance Portability and
Accountability Act)-compliant instances at either institution
but will be technology we integrate into future work.

In terms of the performance of the models we plan to implement,
the significance of the F1-scores and AUROC metrics is crucial
for understanding their practical implications in a clinical
environment. Of the NER, logic-based models we plan to
implement at UC only the D1 model has an F1-score less than
0.80. An F1-score of greater than 0.80 indicates a high level of
accuracy in identifying relevant entities, which translates to
reliable feedback being generated by the D0 and D2 NER,
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logic-based models each with F1-scores of 0.80. While the D1
NER, logic-based model did not reach this level of performance
with an F1-score of 0.74, an F1-score greater than 0.70 has been
deemed sufficient for applications not involving direct patient
care decisions, such as for documentation feedback and
educational purposes [43,44]. Furthermore, in the context of
educational feedback, an F1-score of greater than 0.70 ensures
a balance between precision and recall, which is crucial for
providing comprehensive and reliable feedback to residents
without the risk of significant negative consequences [45].
Similarly, all of the LLMs we plan to implement at NYU and
UC except 1 have AUROCs greater than 0.80; the GatorTron
LLM EA2 model being the exception with an AUROC 0.75.
An AUROC of greater than 0.80 suggests that the model has
an excellent ability to accurately perform a classification task
in this case classify quality of CR documentation. Similar to
F1-scores, an AUROC greater than 0.70 is acceptable in
particular for low stakes clinical tasks like formative feedback
on CR documentation being provided with these models [46,47].

Finally, we also learned a lot of lessons working across two
institutions on how AI technologies can be adapted and
successfully implemented at sites with different resources. Some
key takeaways include experimenting with different LLMs
including ones that are openly available, performing primary
development at an institution with more resources and creating
a HIPAA-compliant pipeline to share code thus mitigating
ethical concerns of patient privacy, developing variations on
truncation methods to account for different note writing styles,
and creating adaptable approaches to different degrees of
computing power such as using text augmentation to prevent
overfitting at UC. We will take these lessons learned about
generalizability to the next phases of the work and develop
strategies to implement more advanced technologies across
institutions while maintaining HIPAA compliance working with
EHR data.

Our next steps include integrating these AI-based assessments
into each residency program as new mechanisms to provide
formative feedback to residents. At NYU, we will iterate on
dashboards implemented with our previous supervised ML
model to improve resident and faculty coaches’ ability to
visualize longitudinal trends and set improvement goals [17].
At UC, dashboard implementation will represent a new

mechanism for formative feedback for residents that currently
does not exist. Dashboards at both programs will include percent
high-quality (score of 2) notes for D score and E score, trends
in scores over time, and goal targets for residents. Residents at
both programs will be able to access their data through
dashboards for routine review. Each program will create a
process for residents to review their performance data and set
specific, individualized goals for improving their CR
documentation. After initial implementation, we will collect
data on outcomes, including the impact on CR documentation
practices of IM residents.

Limitations
While the models developed have high performance, they are
not perfect. However, the intent is for use in formative and not
high-stakes summative assessment which would have a higher
threshold for implementation [48]. In addition, similar to our
earlier work the ML model excludes the interpretive summary
which is a component of the original human rubric
Revised-IDEA tool but was still considered too complex to
tackle with the AI technologies used in this study [5]. Another
limitation is that the LLMs used in this study only give a
prediction of D and EA scores without explainability. We will
experiment further with newer GAI models in next phases of
the work that can help address many of these limitations given
GAI’s ability to provide narrative explanations and not just
classification scores and promising research thus far on the use
of GAI in CR assessment with curated data [26,27]. Finally,
while we were able to navigate strategies to implement these
technologies at 2 sites, there are still some potential limitations
that might impact generalizability: (1) not all the technologies
we used are readily publicly available and (2) each institution
potentially has its own unique writing style which could impact
performance of the models and approaches to truncation
methods.

Conclusions
This is the first multi-institutional study to apply LLMs for
assessing CR documentation in the EHR. Lessons learned from
this study can help promote implementation of these
technologies across institutions with ranges of technical
resources. Further use of LLMs in the EHR for assessment and
feedback can be transformative for medical education and
patient care.
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