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Abstract

Background: With suicide rates in the United States at an all-time high, individuals experiencing suicidal ideation are increasingly
turning to large language models (LLMs) for guidance and support.

Objective: The objective of this study was to assess the competency of 3 widely used LLMs to distinguish appropriate versus
inappropriate responses when engaging individuals who exhibit suicidal ideation.

Methods: This observational, cross-sectional study evaluated responses to the revised Suicidal Ideation Response Inventory
(SIRI-2) generated by ChatGPT-4o, Claude 3.5 Sonnet, and Gemini 1.5 Pro. Data collection and analyses were conducted in July
2024. A common training module for mental health professionals, SIRI-2 provides 24 hypothetical scenarios in which a patient
exhibits depressive symptoms and suicidal ideation, followed by two clinician responses. Clinician responses were scored from
–3 (highly inappropriate) to +3 (highly appropriate). All 3 LLMs were provided with a standardized set of instructions to rate
clinician responses. We compared LLM responses to those of expert suicidologists, conducting linear regression analyses and
converting LLM responses to z scores to identify outliers (z score>1.96 or <–1.96; P<0.05). Furthermore, we compared final
SIRI-2 scores to those produced by health professionals in prior studies.

Results: All 3 LLMs rated responses as more appropriate than ratings provided by expert suicidologists. The item-level mean
difference was 0.86 for ChatGPT (95% CI 0.61-1.12; P<.001), 0.61 for Claude (95% CI 0.41-0.81; P<.001), and 0.73 for Gemini
(95% CI 0.35-1.11; P<.001). In terms of z scores, 19% (9 of 48) of ChatGPT responses were outliers when compared to expert
suicidologists. Similarly, 11% (5 of 48) of Claude responses were outliers compared to expert suicidologists. Additionally, 36%
(17 of 48) of Gemini responses were outliers compared to expert suicidologists. ChatGPT produced a final SIRI-2 score of 45.7,
roughly equivalent to master’s level counselors in prior studies. Claude produced an SIRI-2 score of 36.7, exceeding prior
performance of mental health professionals after suicide intervention skills training. Gemini produced a final SIRI-2 score of
54.5, equivalent to untrained K-12 school staff.

Conclusions: Current versions of 3 major LLMs demonstrated an upward bias in their evaluations of appropriate responses to
suicidal ideation; however, 2 of the 3 models performed equivalent to or exceeded the performance of mental health professionals.
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Introduction

Suicide is one of the leading causes of death among individuals
under the age of 50 in the United States, and it is the second
leading cause of death among adolescents [1]. Rates of suicide
have also grown sharply in recent years; 39,518 suicide deaths
were reported in 2011, compared to 48,183 in 2021. Although
this trajectory declined during the COVID-19 pandemic, more
recent data indicate the upward trend has resumed [2].

Large language models (LLMs) have drawn widespread
attention as a potential vehicle for helping or harming
individuals who are depressed and at risk of suicide [3]. LLMs
are designed to interpret and generate human-like text responses
to written and spoken queries, and they include broad health
applications [4]. Platforms like ChatGPT, as well as mental
health apps powered by LLMs, offer an outlet to individuals
looking for therapeutic advice on how to cope with depressive
symptoms, loneliness, and thoughts of suicide [5,6]. This could
be particularly beneficial for the roughly 50 million Americans
living in rural parts of the United States with poor access to
mental health care [7] or for those who cannot afford the cost
of therapy [8,9].

On the other hand, researchers and advocates fear that LLMs
could make poor, if not outright injurious, recommendations
when engaging with individuals with who express suicidal
ideation [10]. Only a small handful of studies in the
peer-reviewed literature have evaluated the competencies of
LLMs when addressing individuals who exhibit depressive
symptoms and suicidal ideation [11-14]. Typically, these studies
quantify behaviors of LLMs, such as making an initial referral
to a human, rather than directly comparing LLM performance
to standardized benchmarks [12]. For LLMs to improve on tasks
such as offering therapeutic advice, reinforcement learning from
human feedback, a process in which human feedback from
experts is used to align LLM responses with best practices and
ethical standards in mental health care, is required.

In this study, we assessed the competency of 3 widely used
LLMs to distinguish appropriate versus inappropriate responses
when engaging individuals who exhibit suicidal ideation. To
do so, we compared the responses of LLMs to responses by
expert suicidologists on a previously-published standardized
scale: the Suicide Intervention Response Inventory (SIRI-2)
[15]. We hypothesized that ratings generated by LLMs would

differ significantly from those of expert suicidologists. We also
hypothesized that LLMs would not demonstrate a consistent
bias—meaning they would not systematically rate responses as
more or less appropriate, compared to expert suicidologists.

Methods

Ethical Considerations
This observational cross-sectional study was deemed exempt
from review by Harvard Medical School’s Institutional Review
Board (reference #2116708). The study followed Strengthening
the Reporting of Observational Studies in Epidemiology
(STROBE) guidelines.

Measures
The SIRI-2 contains 2 sets of 24 hypothetical patient remarks
that disclose depressive symptoms and suicidal thoughts (for
example: “I don’t think there’s really anyone who cares whether
I’m alive or dead”). Patient remarks are followed by 2 possible
clinician responses, each of which could be considered
supportive, neutral, or deleterious to suicide prevention (for
example, Clinician A: “It sounds like you’re feeling pretty
isolated”; Clinician B: “Why do you think that no one cares
about you anymore?”) [15].

LLMs were provided the original instructions from the SIRI-2,
which state that respondents were to assign each clinician
response a score from –3 (highly inappropriate response) to +3
(highly appropriate response), on a 7-point ordinal scale. Expert
suicidologists were not recruited as part of this study but rather,
were previously recruited by the instrument’s authors to create
a normative benchmark by which to compare responses from
other individuals [15]. In the context of this study, we compared
the responses of LLMs to those of these previously recruited
expert suicidologists. The final SIRI-2 score is represented as
the sum of differences between LLMs’ and experts’ ratings; a
lower score indicates greater alignment between LLMs and
expert suicidologists.

Previous research has reported the SIRI-2 scores for a wide
range of individuals—such as doctoral students in clinical
psychology, master’s level counselors, and K-12 school staff
(see Table 1) [16-20]. Human performance on these evaluations
therefore serves as a reference point for which we could compare
LLM performance.
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Table 1. Prior studies assessing human performance on the Suicide Intervention Response Inventory (SIRI-2).

SIRI-2 scorebPre- or post-trainingaCadre assessedStudy settingStudy authors and date

68.2PretrainingSecond-year medical residentsJapanFujisawa et al [18], 2013

48.8PretrainingClinical psychologistsJapanKawashima et al [21], 2020

62.3PretrainingSocial workersJapanKawashima et al [21], 2020

61.3PretrainingNursesJapanKawashima et al [21], 2020

45.4N/AcClinical psychology PhD studentsUnited StatesMachelprang et al [19], 2014

56.8PretrainingFront-line health workersUnited KingdomMorriss et al [20], 1999

46.4Post-trainingFront-line health workersUnited KingdomMorriss et al [20], 1999

54.7PretrainingMaster’s level counselorsUnited StatesNeimeyer and Bonnelle [15], 1997

41.0Post-trainingMaster’s level counselorsUnited StatesNeimeyer and Bonnelle [15], 1997

55.7N/APsychiatristsItalyPalimieri et al [22], 2008

63.9N/AEmergency physiciansItalyPalimieri et al [22], 2008

71.3N/APsychiatric nursesItalyPalimieri et al [22], 2008

91.1N/AGeneral practitionersItalyPalimieri et al [22], 2008

47.4N/ACommunity mental health centers
staff

BelgiumScheerder et al [23], 2010

47.5N/AExperienced volunteers at a suicide
crisis line

BelgiumScheerder et al [23], 2010

51.1N/AGeneral practitionersBelgiumScheerder et al [23], 2010

54.4N/AHospital nursesBelgiumScheerder et al [23], 2010

52.9PretrainingK-12 school staffUnited StatesShannonhouse et al [16], 2017a

49.9Post-trainingK-12 school staffUnited StatesShannonhouse et al [16], 2017a

52.9PretrainingCollege staffUnited StatesShannonhouse et al [17], 2017b

50.1Post-trainingCollege staffUnited StatesShannonhouse et al [17], 2017b

aPretraining represents measurement of individuals prior to suicide intervention response training, while post-training represents measurement of
individuals after suicide intervention response training.
bA lower score is considered better on the SIRI-2. Values are reported to the tenths place.
cN/A: not applicable. N/A indicates studies that did not conduct pre- and post-training analyses.

Procedures
Using ChatGPT-4o, Claude 3.5 Sonnet, and Gemini 1.5 Pro,
we conducted a series of assessments from June to July 2024.
Three members of the research team created separate accounts
to interact with and prompt LLMs. Research team members
prompted LLMs with the original instructions for the SIRI-2,
as well as with one of the SIRI2-2’s 24 items. We did not prompt
LLMs with any additional text. We used this approach to
evaluate how LLMs responded without further prompting
strategies (ie, methods such as chain-of-thought, in which the
responses of LLMs are guided by additional instructions,
contextual information, or examples) [24]. See Multimedia
Appendix 1 for an overview of the data collection workflow.

The 3 research team members recorded responses provided by
LLMs. They also documented any rationale provided by LLMs
for the scores they assigned (see Multimedia Appendix 2 for
this information).

Statistical Analysis
As a first step, we summarized responses generated by LLMs
and expert suicidologists, reporting mean scores and SDs on
each of the 24 items. For LLMs, these values were computed
across the 3 sets of responses generated by team members. We
also examined alignment between LLM and expert responses,
measured as the magnitude of the correlation coefficients
between the two. Next, we inspected test-retest reliability of
each of the LLM’s responses, a marker of the consistency and
stability of an LLM’s responses over time. This was measured
as the mean correlation coefficient across the 3 instances in
which each LLM response set was generated.

Following this, we conducted 2 sets of inferential analyses.
First, we conducted linear regression analysis in Stata 17.1
(StataCorp) to compare item-level responses assigned by each
LLM to those assigned by expert suicidologists. The dependent
variable in the model was the item score (–3 to +3). The 2
independent variables were (1) respondent type (ie, LLM vs
expert) and (2) survey item number (eg, Item 1, Item 2). This
specification allowed us to test whether LLMs produced
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systematically different scores from experts, while also
accounting for the nested structure of the data. For example,
item scores (from –3 to +3) were nested within survey items.

Second, based on mean scores and corresponding SDs from
expert suicidologists, we calculated z scores for each item-level
response generated by LLMs. We then quantified the average
z score for an LLM’s responses, as well as the number and
percent of z scores that were statistically significant (ie, z scores
greater than 1.96 or less than –1.96). This provided an indication
of overall alignment between an LLM’s and experts’ responses.

Lastly, we calculated final SIRI-2 scores for each LLM and
compared these to the performance of humans in prior studies,
including the performance of mental health professionals with
and without training on suicide intervention response.

Results

Descriptive Statistic
Expert suicidologists reported a mean score of –0.20 (SD 2.22)
across all items, meaning that the average response
approximated “neither appropriate, nor inappropriate”, but
item-level responses varied widely. By comparison, mean scores
for ChatGPT-4o, Claude 3.5 Sonnet, and Gemini 1.5 were 0.67
(SD 2.41), 0.41 (SD 2.51), and 0.53 (SD 1.73), respectively,
meaning that responses tended to skew more toward
“appropriate” compared to “inappropriate”. ChatGPT-4o
assigned a higher score than experts for 40 of 48 responses
(83%). Claude 3.5 generated a higher score on 39 responses
(81%), and Gemini 1.5 generated a higher score on 36 responses
(75%; see Figure 1).

Figure 1. Mean difference in ratings on Suicidal Ideation Response Inventory (SIRI-2) items: large language model versus expert suicidologists.

The correlation between LLM and expert responses was 0.93
for ChatGPT-4o, 0.96 for Claude 3.5, and 0.81 for Gemini 1.5.
In terms of test-retest reliability, mean test-retest correlation
coefficients were 0.98 for ChatGPT-4o, 0.99 for Claude 3.5
Sonnet, and 0.73 for Gemini 1.5, indicating high reliability for
all 3 LLMs.

Regression Analyses: Bias
In our regression, LLMs assigned significantly higher scores
to hypothetical responses, compared to expert suicidologists,
indicating LLMs perceived responses as more appropriate than
experts did (see Table 2) with the mean difference in item-level
scores being 0.865 (95% CI 0.613-1.118; P<.001) for
ChatGPT-4o, 0.608 (95% CI 0.408-0.809; P<.001) for Claude
3.5 Sonnet, and 0.733 (95% CI 0.352-1.114; P<.001) for Gemini
1.5.
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Table 2. Estimated difference in perceived appropriateness of responses to suicidal ideation.

PerformanceBiasLLM model and version

SIRI-2c scoreZ scores with an SD of >1.96, n

(%)b
Mean z scoreP valueScore differencea (95% CI)

45.719 (19.1)1.17<.0010.865 (0.613-1.118)ChatGPT-4o

36.655 (10.6)1.01<.0010.608 (0.408-0.809)Claude 3.5 Sonnet

54.5217 (36.2)1.54<.0010.733 (0.352-1.114)Gemini 1.5 Pro

aAverage difference represents the mean difference in units, on a 7-point ordinal scale, between an LLM model’s responses and expert suicidologists’
responses.
bZ scores were generated for 47 of 48 responses, as 1 item had a SD of 0.
cSIRI-2: Suicide Intervention Response Inventory. A lower score is considered better on the SIRI-2.

Overall Performance
Across all items, the average z score for ChatGPT-4o responses
was 1.17, with 9 responses (19%) greater than 1.96 SDs (all
P<.05) from the mean responses by expert suicidologists (see
Figure 2). The average z score for Claude 3.5 Sonnet responses
was 1.01, with 5 (11%) responses greater than 1.96 SDs (all
P<.05) from the mean expert responses. Lastly, the average z

score for Gemini 1.5 Pro responses was 1.54, with 17 (36%)
responses greater than 1.96 SDs (all P<.05) from the mean
responses by experts. In terms of final SIRI-2 scores, these were
45.71 for ChatGPT-4o, 54.52 for Gemini 1.5 Pro, and 36.65 for
Claude 3.5 Sonnet. We note that the lowest possible score, for
which expert suicidologists serve as the reference point, was
12.90.

Figure 2. Density plot represents the proportion of responses, across all 48 item responses, with z scores ranging from –3 to +6. Dashed vertical lines
indicate cutoff thresholds of –1.96 and +1.96. Values less than –1.96 or greater than +1.96 are significant at P<.05.
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Discussion

We evaluated the capacity of 3 LLMs to assess the
appropriateness of responses to 24 scenarios in which a
hypothetical individual disclosed depressive symptoms and
suicidal thoughts. Compared to the ratings of expert
suicidologists, the evaluations of the 3 LLMs were highly
correlated but demonstrated an upward bias toward rating
responses as more appropriate. Similar biases have been
identified in other domains of LLM performance, such as a
tendency to over-assign medical diagnoses to individuals of
particular demographic backgrounds [25].

LLMs’ overall performance as measured by SIRI-2
score—which captures the magnitude of their deviations from
expert suicidologists—varied across models. The final score
produced by Gemini (54.52) was roughly equivalent to past
scores produced by K-12 school staff prior to suicide
intervention skills training [16]. By contrast, the final score
produced by ChatGPT (45.71) was closer to those exhibited by
doctoral students in clinical psychology [19] or master’s level
counselors [15]. Claude observed the strongest performance
(36.65), surpassing scores observed even among individuals
who recently completed suicide intervention skills training, as
well as studies with psychiatrists and other mental health
professionals [21-23].

A key issue in this study is whether a competency in
adjudicating appropriate responses to suicidal ideation translates
to a competency in responding to individuals disclosing suicidal
ideation. Serving as referee is not the same as active
engagement. The findings of this study also highlight a standard
path forward for companies developing and refining LLMs for
therapeutic purposes: namely, to consider indexing LLM
responses against high-quality benchmarks, such as ratings of
expert suicidologists. Instruments such as the SIRI-2 offer rare
touchstones for this. A complementary model involves
reinforcement learning from human feedback, in which expert
clinicians provide direct evaluations of LLM performance
relative to a set of pre-established criteria and best practices
[26,27].

When used for therapeutic purposes, LLMs will likely encounter
users with suicidal ideation on a routine basis. Roughly 1 in 4
mental health professionals encounter suicidal ideation among
their patients [28]. Widespread use of LLM
technology—including new companies already drawing on
LLM technology for mental health care [29]—could reach a
much wider audience of individuals coping with depression and
suicidal thoughts. To date, a common guardrail has been for
LLMs to produce “hard stops”, in which individuals are referred
to 988 or another suicide prevention hotline. While such referrals
may be beneficial, they also artificially circumscribed
interactions in a way that could be taken as a missed opportunity.

There are several important study limitations to note. First, LLM
technologies are constantly evolving. This study offers a
snapshot of LLM performance in July 2024. Second, we selected
the SIRI-2 as an evaluative tool because it is widely used;
however, alternative instruments could result in different
findings. Third, as noted above, this study focuses on the
evaluative competencies of LLMs rather than their abilities to
directly respond to suicidal ideation. While there are many
prompting strategies designed to elicit better performance of
LLMs [30], the goal of this study was to test how LLMs evaluate
responses to suicidal ideation in conversations without any
additional guidance. This is similar to LLM alignment studies
where fictitious scenarios are presented without specific
prompting strategies and LLM responses are evaluated [31].
Lastly, we note that the authors of the SIRI-2 constructed the
original panel of expert suicidologists, and as such, our research
team (and other users of the SIRI-2) lack information regarding
their average years of clinical practice.

In summary, this study highlights the potential and limitations
of 3 widely used LLMs to assess appropriate responses to
individuals exhibiting suicidal ideation. While current LLM
versions exhibit a preferential bias toward viewing responses
as appropriate, their overall performance was on-par with or
otherwise exceeded those documented in prior human studies.
Claude 3.5 Sonnet surpassed other LLMs by a sizable margin.
Future research might explore alternative configurations in
which LLMs directly respond to suicidal ideation; although,
benchmarks for index performance in these scenarios are
uncommon.
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