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Abstract

Background: Currently, there is a lack of effective early assessment tools for predicting the onset and development of cardiac
arrest (CA). With the increasing attention of clinical researchers on machine learning (ML), some researchers have developed
ML models for predicting the occurrence and prognosis of CA, with certain models appearing to outperform traditional scoring
tools. However, these models still lack systematic evidence to substantiate their efficacy.

Objective: This systematic review and meta-analysis was conducted to evaluate the prediction value of ML in CA for occurrence,
good neurological prognosis, mortality, and the return of spontaneous circulation (ROSC), thereby providing evidence-based
support for the development and refinement of applicable clinical tools.

Methods: PubMed, Embase, the Cochrane Library, and Web of Science were systematically searched from their establishment
until May 17, 2024. The risk of bias in all prediction models was assessed using the Prediction Model Risk of Bias Assessment
Tool.

Results: In total, 93 studies were selected, encompassing 5,729,721 in-hospital and out-of-hospital patients. The meta-analysis
revealed that, for predicting CA, the pooled C-index, sensitivity, and specificity derived from the imbalanced validation dataset
were 0.90 (95% CI 0.87-0.93), 0.83 (95% CI 0.79-0.87), and 0.93 (95% CI 0.88-0.96), respectively. On the basis of the balanced
validation dataset, the pooled C-index, sensitivity, and specificity were 0.88 (95% CI 0.86-0.90), 0.72 (95% CI 0.49-0.95), and
0.79 (95% CI 0.68-0.91), respectively. For predicting the good cerebral performance category score 1 to 2, the pooled C-index,
sensitivity, and specificity based on the validation dataset were 0.86 (95% CI 0.85-0.87), 0.72 (95% CI 0.61-0.81), and 0.79 (95%
CI 0.66-0.88), respectively. For predicting CA mortality, the pooled C-index, sensitivity, and specificity based on the validation
dataset were 0.85 (95% CI 0.82-0.87), 0.83 (95% CI 0.79-0.87), and 0.79 (95% CI 0.74-0.83), respectively. For predicting ROSC,
the pooled C-index, sensitivity, and specificity based on the validation dataset were 0.77 (95% CI 0.74-0.80), 0.53 (95% CI
0.31-0.74), and 0.88 (95% CI 0.71-0.96), respectively. In predicting CA, the most significant modeling variables were respiratory
rate, blood pressure, age, and temperature. In predicting a good cerebral performance category score 1 to 2, the most significant
modeling variables in the in-hospital CA group were rhythm (shockable or nonshockable), age, medication use, and gender; the
most significant modeling variables in the out-of-hospital CA group were age, rhythm (shockable or nonshockable), medication
use, and ROSC.

Conclusions: ML represents a currently promising approach for predicting the occurrence and outcomes of CA. Therefore, in
future research on CA, we may attempt to systematically update traditional scoring tools based on the superior performance of
ML in specific outcomes, achieving artificial intelligence–driven enhancements.

Trial Registration: PROSPERO International Prospective Register of Systematic Reviews CRD42024518949;
https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=518949
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Introduction

Background
Cardiac arrest (CA) remains a critical challenge in contemporary
medicine, characterized by a dismally low survival rate and
poor prognosis, and, therefore, has garnered global attention
[1]. CA can be classified by the occurrence location into
in-hospital CA (IHCA) and out-of-hospital CA (OHCA). Despite
advancements in cardiopulmonary resuscitation techniques,
global registry data indicate that the incidence and survival rates
of CA have not significantly improved. The incidence of IHCA
in the United States increased to 900 to 1000 per 100,000
hospitalized patients between 2008 and 2017, compared to 160
per 100,000 in the United Kingdom from 2011 to 2013 and 840
per 100,000 in China as of 2020 [2-4]. Meanwhile, the estimated
averages of incidence of OHCA under emergency medical
services (EMS) in North America, Asia, and Europe from 2010
to 2020 were 47.3, 45.9, and 40.6 per 100,000 people,
respectively. The estimated averages of the survival rates of
IHCA from 2010 to 2020 were 25% in the United States, 18%
in the United Kingdom, and only 9.4% in China. For OHCA,
the estimated averages of the survival rates during this same
period were 10% to 12% in the United States, 8% in Europe,
and just 3.6% in Asia [2,5]. These low survival rates also impose
significant economic burdens on nations. According to relevant
reviews, the cost-effectiveness threshold for CA ranged from
US $20,000 to US $150,000 per quality-adjusted life year, with
each life saved potentially reducing costs by US $19,000 to US
$71,000 per case [6].

Although efforts to establish CA centers independently began
in various regions of the United States as early as 2000 to 2010
[7] and Germany initiated CA center certification throughout
the country [8] in August 2019 aiming to provide
evidence-based, bundled care to improve CA survival rates, CA
remains a formidable clinical challenge. If resuscitation is not
timely, the patient may lose consciousness within approximately
10 seconds, with irreversible hypoxic-ischemic brain injury
occurring within 4 minutes [9], and if resuscitation is delayed
beyond 10 minutes, survival is practically impossible [10,11].
Thus, early prediction and identification of CA are critical
factors in preventing death and poor outcomes and represent a
major challenge that requires urgent clinical attention.

Objectives
However, there is a scarcity of efficient, internationally
recognized, and universally accepted assessment tools for early
prediction and identification of CA risk and adverse outcomes.
In recent years, with the rapid advancement of artificial
intelligence (AI), many researchers have used machine learning
(ML) to address clinical challenges. Commonly used ML

approaches can be broadly categorized into supervised and
unsupervised learning. In the context of supervised ML, clinical
predictors can be incorporated into various models. In these
models, their parameters are adjusted based on outcome
variables to generate predictions regarding the probability of
positive event occurrence [12]. It is now common to see ML
being used to predict disease progression and even to diagnose
and treat complex diseases effectively. For instance, in 2019,
several authors, including Hatib et al [13] and Wijnberge et al
[14], successfully predicted intraoperative hypotensive events
using ML, leading to the clinical translation of these models
into products that significantly enhanced patient safety during
surgical anesthesia [15]. By 2023, some researchers had
similarly affirmed the substantial potential of ML models in
cancer detection, prognosis, and treatment, recognizing their
exciting discoveries and contributions to advancing medical
practice [16]. The aforementioned studies were based on
supervised ML and the extensive use of interpretable clinical
features to construct predictive models and simultaneously
demonstrate the promising predictive performance of ML in
clinical events across various fields. In this context, some
researchers have also developed different ML models for risk
prediction in CA. Recent reviews by Sem et al [17] and Chen
et al [18] indicate that ML appears to exhibit high accuracy in
both the management and risk prediction of CA. However, these
reviews do not quantitatively synthesize the results of ML
models, which significantly limits our ability to interpret the
specific value of various ML models in CA applications and
the selection of appropriate models. Therefore, we conducted
this systematic review and meta-analysis to review the predictive
performance of ML for the occurrence of CA, good neurological
prognosis after CA, mortality, and the return of spontaneous
circulation (ROSC) after CA to provide evidence-based guidance
for the development and updating of simple prediction tools
with high accuracy and direct access to results.

Methods

Study Registration
This study was conducted in adherence to the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines and prospectively registered with
PROSPERO (International Prospective Register of Systematic
Reviews; ID CRD42024518949). The detailed PRISMA
checklist is presented in Multimedia Appendix 1.

Eligibility Criteria
Detailed inclusion and exclusion criteria were defined to screen
the original studies relevant to our systematic review from the
retrieved literature (Textbox 1).
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Textbox 1. Inclusion and exclusion criteria for original studies.

Inclusion criteria

• Study type: the included studies must be case-control, cohort, nested case-control, case-cohort, or cross-sectional studies.

• Model construction: although some studies, due to limited sample sizes, lacked independent external validation, we could not dismiss their
contributions. In our analysis, it was necessary to synthesize results from the training and validation sets to assess the presence of severe overfitting.
Therefore, those with no external validation were also included.

• Outcomes: studies that comprehensively constructed machine learning (ML) models for cardiac arrest (CA) occurrence prediction or clinical
outcomes following CA were selected.

• Language: we included original studies in English.

Exclusion criteria

• Study type: studies categorized as meta-analyses, reviews, guidelines, expert opinions, or conference abstracts and not fully peer reviewed and
published were removed.

• Model construction: studies with only risk factor analysis but no construction of a complete ML model were excluded, those with a limited
number of samples (<20) were not included, and those only focusing on the accuracy of univariate predictors were removed.

• Outcomes: in existing ML studies, model performance was assessed using the receiver operating characteristic curve, C-statistic, sensitivity,
specificity, accuracy, recall, precision, confusion matrix, or F1-score. However, a few original studies that lacked at least one of these metrics
and, therefore, did not evaluate model performance adequately were excluded.

• Language: non–English-language original studies were excluded.

Data Sources and Search Strategy
A systematic search of the PubMed, Embase, Cochrane Library,
and Web of Science databases was carried out from their
inception to May 17, 2024. The search strategy involved
controlled vocabulary and free-text terms, with no restrictions
on geographical location or publication year. The detailed search
strategy is presented in Multimedia Appendices 2-5.

Study Selection and Data Extraction
The retrieved studies were imported into EndNote X9 (Clarivate
Analytics). Their titles and abstracts were reviewed. After the
exclusion of duplicates, the preliminary eligible original studies
were selected and their full texts downloaded for determining
the final inclusion. An electronic spreadsheet was prepared to
extract the following information: first author, publication year,
author’s country, study type, patient source, prediction events,
data balance, location of CA occurrence, number of cases with
study events, total number of cases, number of cases in the
training and validation sets, method of validation set generation,
missing data–handling methods, and types of models used.
Study selection and data extraction were independently
conducted by 2 researchers. Disagreements were discussed and
resolved with a third author.

Risk of Bias in the Studies
The Prediction Model Risk of Bias Assessment Tool
(PROBAST) was used to assess the risk of bias in all the
included original studies. PROBAST comprises several
questions across 4 domains—participant, predictor, outcome,
and statistical analysis—which reflect the overall risk of bias
and applicability. These domains consist of 2, 3, 6, and 9
questions, respectively, each with 3 possible answers (Yes or
Probablyyes, No or Probably no, and No information). A domain
was classified as high risk if any question was answered with
No or Probably no. Conversely, a domain was regarded as low
risk only if every question was answered with Yes or Probably

yes. The overall risk of bias was assessed as low when all
domains were deemed to be low risk. When at least one domain
was high risk, the overall risk of bias was rated as high. In total,
2 authors independently assessed the risk of bias using
PROBAST and cross-checked their findings. Any discrepancies
were addressed by consulting with a third author to reach
agreement.

Outcomes
The primary outcome measure was the C-index, which reflects
the predictive ability of ML models for IHCA and OHCA.
However, we found that the C-index might not have accurately
described the predictive performance of ML for positive events,
particularly in models built on severely imbalanced data, as
these original studies often suffered from such imbalance. This
limitation was evident in predicting the occurrence of IHCA
and OHCA, the good cerebral performance category score 1 to
2 (CPC 1-2), mortality, and ROSC. Therefore, in addition to
the C-index, our primary outcome measures encompassed
sensitivity and specificity. Our secondary outcome was the
frequency of variables used in the ML models.

Synthesis Methods
A meta-analysis of the C-index, a measure of the general
accuracy of ML models, was carried out. When the 95% CI and
SE for the C-index were missing in some studies, the SE was
estimated based on the study by Debray et al [19]. Due to the
differences in the included variables and inconsistent parameters
among the ML models, random-effects models were prioritized
in the meta-analysis of the C-index. In addition, a meta-analysis
on sensitivity and specificity was conducted through a bivariate
mixed-effects model based on diagnostic 2 × 2 tables. However,
most original studies did not report these tables. In such cases,
we used the following methods to calculate the 2 × 2 tables: (1)
calculation based on sensitivity, specificity, precision, and case
numbers; and (2) calculation based on the best Youden index
to extract sensitivity and specificity, followed by case number
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integration. Nevertheless, this method allowed for meta-analysis
only when there were ≥4 models. For <4 models, we presented
the range of sensitivity and specificity. Our meta-analysis was
conducted in R (version 4.2.0; R Foundation for Statistical
Computing).

Results

Study Selection
A total of 1270 articles were obtained from databases, with 599
(47.17%) being duplicates. Among these 599 duplicates, 471

(78.6%) were found to be duplicates via software, and 128
(21.4%) were manually identified as duplicates. After the
elimination of duplicates, 671 articles were screened by title
and abstract, with 169 (25.2%) being selected for full-text
review. After the exclusion of conference abstracts published
in full text without peer review (19/169, 11.2%), studies with
risk factor analyses but no complete ML models (22/169, 13%),
studies lacking outcome indicators (28/169, 16.6%), and studies
with severe statistical errors (7/169, 4.1%), a total of 93 articles
were included finally. The detailed process is illustrated in
Figure 1.

Figure 1. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for study selection.

Study Characteristics
The 93 selected studies were published between 2011 and 2024,
covering 14 countries, primarily South Korea, China, Japan,
the United States, and Singapore. Among the 93 studies, there
were 23 (25%) prospective cohort studies and 3 (3%)
case-control studies, with the remainder (67/93, 72%) being
retrospective cohort studies. Data for 26% (24/93) of the studies
were sourced from multiple centers, whereas 37% (34/93) of
the studies used data from registry databases and the rest (35/93,
38%) were single-center studies. In 30% (28/93) of the studies,
the predicted outcome was the occurrence of CA. In 42 studies,
the predicted outcome was the neurological prognosis of patients
with CA, with 10 (24%) studies focused on patients with IHCA
and the remainder (n=32, 76%) focused on patients with OHCA.
In 27% (25/93) of the studies, the predicted outcome was CA
mortality, and in 12% (11/93) of the studies, the predicted
outcome was ROSC in patients with CA. The 93 studies
collectively encompassed a total of 5,729,721 cases, including

1,737,085 OHCA cases and 3,992,636 IHCA cases. Regarding
the predictive models constructed, 81% (75/93) of the studies
had independent validation sets, but only 27% (25/93) used
external validation, primarily using k-fold cross-validation and
random-sampling internal validation methods. A total of 34%
(32/93) of the studies described methods to prevent data
overfitting, mainly through cross-validation. In total, 17 types
of ML models were involved, with logistic regression (LR),
random forest (RF), deep learning, and decision trees (DTs)
being the most prominent. In addition, these studies validated
several previously established scoring tools, including the
Cardiac Arrest Neurological Prognosis score, distance scoring
system, Emergency Department In-Hospital Cardiac Arrest
Score, FACTOR score, Modified Early Warning Score, National
Early Warning Score, National Early Warning Score 2, OHCA
score, proposed scoring system, Rapid Emergency Medicine
Score, Simplified Acute Physiology Score II, Cardiac Arrest
Hospital Prognosis score, and ROSC after CA score. The details
of the included studies are shown in Tables 1 and 2.
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Table 1. Characteristics of the included studies.

Predictive eventsPatient sources (single
center, multicenter, or
registration database)

Study type (case-control, cohort study
[retrospective or prospective], nested
cohort study, or case-cohort study)

Country of first au-
thor

Year of
publication

Study

Cardiac arrestMulticenterRetrospective cohort studyTaiwan, China2024Wang et al [20]

Cardiac arrestSingle centerRetrospective cohort studyPakistan2024Raheem et al [21]

In-hospital mortality and

CPC 3-5a
Single centerProspective cohort studySwitzerland2024Amacher et al [22]

Cardiac arrestSingle centerRetrospective cohort studyRepublic of Korea2024Cho et al [23]

Cardiac arrestSingle centerRetrospective cohort studyRepublic of Korea2024Shin et al [24]

CPC 1-2b and in-hospital
mortality

Single centerProspective cohort studyChina2024Ding et al [25]

CPC 3-5MulticenterRetrospective cohort studyJapan2024Nishioka et al [26]

CPC 1-2Registration databaseRetrospective cohort studyJapan2024Kajino et al [27]

Cardiac arrestMulticenterProspective cohort studyUnited States2024Pham et al [28]

VFc or VTdRegistration databaseProspective cohort studyJapan2024Rahadian et al [29]

Cardiac arrestRegistration databaseRetrospective cohort studyTaiwan, China2024Wang et al [30]

CPC 1-2Single centerRetrospective cohort studyTaiwan, China2024Tsai et al [31]

In-hospital mortalitySingle centerProspective cohort studySwitzerland2024Schweiger et al
[32]

ROSCeRegistration databaseProspective cohort studySwitzerland2024Caputo et al [33]

Cardiac arrestSingle centerRetrospective cohort studyTaiwan, China2023Lu et al [34]

NROSCf and CPC 3-5Single centerRetrospective cohort studyAustria2023Dünser et al [35]

In-hospital mortalityMulticenterRetrospective cohort studyRepublic of Korea2023Bang et al [36]

In-hospital mortalityMulticenterRetrospective cohort studyChina2023Zhang et al [37]

CPC 3-5 and NROSCSingle centerRetrospective cohort studyChina2023Li and Xing [38]

Cardiac arrestSingle centerRetrospective cohort studyChina2023Ding et al [39]

CPC 1-2MulticenterProspective cohort studyJapan2023Uehara et al [40]

CPC 1-2 and ROSCRegistration databaseRetrospective cohort studyRepublic of Korea2023Shin et al [41]

CPC 3-5Single centerRetrospective cohort studyJapan2023Kawai et al [42]

30-day mortalityMulticenterRetrospective cohort studyJapan2023Imamura et al [43]

30-day survivalMulticenterRetrospective cohort studySweden2023Hessulf et al [44]

CPC 3-5Single centerRetrospective cohort studyRepublic of Korea2023Yoon et al [45]

ROSC, survival to dis-
charge, and CPC 1-2

Registration databaseRetrospective cohort studyRepublic of Korea2023Chang et al [46]

ROSCMulticenterRetrospective cohort studyChina2023Wang et al [47]

CPC 1-2Registration databaseRetrospective cohort studyJapan2023Shinada et al [48]

Cardiac arrestSingle centerCase-control studyChina2022Xu et al [49]

Cardiac arrestRegistration databaseRetrospective cohort studyTaiwan, China2022Tsai et al [50]

Cardiac arrestRegistration databaseRetrospective cohort studyChina2022Tang et al [51]

Cardiac arrestRegistration databaseRetrospective cohort studyRepublic of Korea2022Kim et al [52]

Cardiac arrestSingle centerRetrospective cohort studyRepublic of Korea2022Chae et al [53]

Cardiac arrestSingle centerRetrospective cohort studyTaiwan, China2022Sun et al [54]

Survival to dischargeMulticenterProspective cohort studySingapore2022Wong et al [55]

In-hospital mortalityRegistration databaseProspective cohort studyUnited States2022Tran et al [56]
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Predictive eventsPatient sources (single
center, multicenter, or
registration database)

Study type (case-control, cohort study
[retrospective or prospective], nested
cohort study, or case-cohort study)

Country of first au-
thor

Year of
publication

Study

Survival to discharge and
CPC 1-2

MulticenterRetrospective cohort studySingapore2022Rajendram et al
[57]

Cardiac arrestSingle centerRetrospective cohort studyFrance2022Rafi et al [58]

ROSCRegistration databaseRetrospective cohort studySingapore2022Liu et al [59]

CPC 1-2Registration databaseRetrospective cohort studyTaiwan, China2022Lin et al [60]

CPC 1-2MulticenterRetrospective cohort studyJapan2022Kawai et al [61]

Brain deathSingle centerRetrospective cohort studyJapan2022Itagaki et al [62]

Prehospital ROSC in pedi-

atric OHCAg
Registration databaseRetrospective cohort studyUnited States2022Harris et al [63]

CPC 1-2Registration databaseRetrospective cohort studyUnited States2022Harford et al [64]

CPC 1-2Registration databaseRetrospective cohort studyUnited States2022Harford et al [65]

CPC 1-2Single centerRetrospective cohort studyTaiwan, China2021Chung et al [66]

In-hospital mortalityRegistration databaseRetrospective cohort studyTaiwan, China2021Chi et al [67]

CPC 1-2MulticenterRetrospective cohort studyChina2021Wang et al [68]

CPC 3-5Single centerRetrospective cohort studyRepublic of Korea2021Bae et al [69]

CPC 1-2Single centerProspective cohort studyAustria2021Mueller et al [70]

Cardiac arrestMulticenterRetrospective cohort studyRepublic of Korea2021Lee et al [71]

CPC 1-2Registration databaseProspective cohort studyRepublic of Korea2021Lim et al [72]

ROSCRegistration databaseRetrospective cohort studyHong Kong, China2021Lo and Siu [73]

24-hour survivalSingle centerRetrospective cohort studyBelgium2021Lonsain et al [74]

CPC 1-2Registration databaseProspective cohort studyJapan2021Nishioka et al [75]

Survival to discharge and
CPC 1-2

MulticenterProspective cohort studyRepublic of Korea2021Beom et al [76]

CPC 1-2Single centerRetrospective cohort studyTaiwan, China2021Cheng et al [77]

Survival to discharge and
CPC 1-2

Registration databaseRetrospective cohort studyRepublic of Korea2021Kim et al [78]

CPC 1-2Registration databaseProspective cohort studyRepublic of Korea2021Seo et al [79]

CPC 3-5Single centerRetrospective cohort studyRepublic of Korea2021Song et al [80]

ROSCMulticenterRetrospective cohort studyHong Kong, China2021Sun et al [81]

Significant coronary artery
disease among survivors

of OHCA without STEh

MulticenterProspective cohort studyRepublic of Korea2021Youn et al [82]

CPC 3-5MulticenterProspective cohort studyRepublic of Korea2021Heo et al [83]

CPC 1-2Registration databaseRetrospective cohort studyChina2020Wang et al [84]

Cardiac arrestSingle centerRetrospective cohort studyRepublic of Korea2020Hong et al [85]

Cardiac arrestSingle centerRetrospective cohort studyRepublic of Korea2020Cho et al [86]

Death at 1 month or sur-
vival with poor neurologi-
cal function (CPC 3-5) and
30-day mortality

Registration databaseRetrospective cohort studyJapan2020Hirano et al [87]

CPC 1-2Registration databaseProspective cohort studyJapan2020Okada et al [88]

ROSCRegistration databaseRetrospective cohort studySingapore2020Liu et al [89]

Cardiac arrestRegistration databaseRetrospective cohort studySpain2020Elola et al [90]

Cardiac arrestRegistration databaseRetrospective cohort studyTaiwan, China2020Hsieh et al [91]
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Predictive eventsPatient sources (single
center, multicenter, or
registration database)

Study type (case-control, cohort study
[retrospective or prospective], nested
cohort study, or case-cohort study)

Country of first au-
thor

Year of
publication

Study

Survival to hospital admis-
sion

MulticenterProspective cohort studyItaly2020Baldi et al [92]

Cardiac arrestMulticenterCase-control studyChina2019Li et al [93]

Cardiac arrestSingle centerCase-control studyThailand2019Srivilaithon et al
[94]

CPC 3-5Single centerRetrospective cohort studyRepublic of Korea2019Lee et al [95]

Cardiac arrestSingle centerRetrospective cohort studyTaiwan, China2019Liu et al [96]

Cardiac arrestSingle centerRetrospective cohort studyRepublic of Korea2019Jang et al [97]

1-year survivalMulticenterProspective cohort studyJapan2019Seki et al [98]

CPC 1-2Registration databaseRetrospective cohort studyRepublic of Korea2019Park et al [99]

CPC 1-2 and survival to
discharge

Registration databaseRetrospective cohort studyRepublic of Korea2019Kwon et al [100]

CPC 1-2 and survival to
discharge

MulticenterProspective cohort studyRepublic of Korea2019Kong et al [101]

CPC 1-2Registration databaseRetrospective cohort studyUnited States2019Harford et al [102]

Cardiac arrest and in-hospi-
tal mortality

MulticenterRetrospective cohort studyRepublic of Korea2018Kwon et al [103]

Cardiac arrestSingle centerRetrospective cohort studyTaiwan, China2018Chang et al [104]

CPC 1-2MulticenterRetrospective cohort studyRepublic of Korea2018Shin et al [105]

Survival to hospital dis-
charge

Single centerRetrospective cohort studyRepublic of Korea2017Lee et al [106]

Cardiac arrestSingle centerRetrospective cohort studySingapore2015Liu et al [107]

CPC 1-2 and 30-day sur-
vival

Registration databaseRetrospective cohort studyJapan2014Goto et al [108]

CPC 1-2 and 30-day sur-
vival

Registration databaseRetrospective cohort studyJapan2013Goto et al [109]

Cardiac arrest and in-hospi-
tal mortality

Single centerProspective cohort studySingapore2012Hock Ong et al
[110]

CPC 1-2Registration databaseProspective cohort studyJapan2011Hayakawa et al
[111]

aCPC 3-5: poor cerebral performance category score 3 to 5.
bCPC 1-2: good cerebral performance category score 1 to 2.
cVF: ventricular fibrillation.
dVT: ventricular tachycardia.
eROSC: return of spontaneous circulation.
fNROSC: non-ROSC.
gOHCA: out-of-hospital cardiac arrest.
hSTE: ST segment elevation.
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Table 2. Analytical characteristics of the included studies.

Model typeHandling
method for
missing val-
ues

Number of
cases in the
validation
set

Generation of
validation set

Number of
cases in the
training set

Total num-
ber of cas-
es

Number of
cases of
studied
events

Location of

CAa
Balance of
data (bal-
anced or un-
balanced)

Study

Logistic regres-
sion, National

Deletion41,697External vali-
dation

182,716224,413474In hospitalUnbalancedWang et
al [20]

Early Warning
Score, and
Modified Early
Warning Score

Artificial neural
network, ran-

Deletion19,467Internal valida-
tion

77,88697,3535483In hospitalUnbalancedRaheem
et al [21]

dom forest, and
logistic regres-
sion

Out-of-hospital
CA score, the

No process-
ing

713——d713IHMb: 309;

CPC 3-5c:
309

In hospital
and out of
hospital

BalancedAmacher
et al [22]

Cardiac Arrest
Hospital Progno-
sis score, and
logistic regres-
sion

Deep learning,
Modified Early

Deletion95,607External vali-
dation

—95,607228In hospitalUnbalancedCho et al
[23]

Warning Score,
and National
Early Warning
Score

Deep learning,
logistic regres-

Deletion1025External vali-
dation

9701995198In hospitalUnbalancedShin et al
[24]

sion, random
forest, and Na-
tional Early
Warning Score

Logistic regres-
sion and Cox
regression

Deletion53Internal valida-
tion

—53CPC 1-2e:
20; IHM: 30

In hospitalBalancedDing et al
[25]

Logistic regres-
sion

Supplement4250External vali-
dation

333775876486Out of hospi-
tal

BalancedNishioka
et al [26]

Deep learningDeletion153,374Internal valida-
tion

149,425302,79911,411Out of hospi-
tal

UnbalancedKajino et
al [27]

Logistic regres-
sion

—203External vali-
dation (multi-
center)

231434210Out of hospi-
tal

BalancedPham et
al [28]

Logistic regres-

sion, LASSOf,

Imputation3551—17,16220,713860Out of hospi-
tal

UnbalancedRahadian
et al [29]

and random for-
est

Logistic regres-
sion

—16,127—32,24448,37184Out of hospi-
tal

UnbalancedWang et
al [30]

Logistic regres-
sion

—178Internal valida-
tion

265443CPC 1-2:
127

Out of hospi-
tal

BalancedTsai et al
[31]

FACTOR scoreSupplement153Internal valida-
tion

138291120Out of hospi-
tal

BalancedSchweiger
et al [32]

Logistic regres-
sion

—12,577Internal valida-
tion

—12,5772719Out of hospi-
tal

UnbalancedCaputo et
al [33]
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Model typeHandling
method for
missing val-
ues

Number of
cases in the
validation
set

Generation of
validation set

Number of
cases in the
training set

Total num-
ber of cas-
es

Number of
cases of
studied
events

Location of

CAa
Balance of
data (bal-
anced or un-
balanced)

Study

Logistic regres-
sion, random
forest, National
Early Warning
Score 2, and

XGBoostg

Supplement79,116Random sam-
pling

237,349316,465636Emergency
department

UnbalancedLu et al
[34]

Random forestNo process-
ing

630Internal valida-
tion

—630NROSCi:
390; CPC 3-
5: 559

Operating
rooms and
departments
outside the

ICUh

BalancedDünser et
al [35]

Logistic regres-
sion

Deletion379Random sam-
pling

7541133411In hospitalBalancedBang et
al [36]

Logistic regres-
sion

Deletion——561561495In hospitalBalancedZhang et
al [37]

Logistic regres-
sion

Deletion—Internal valida-
tion (boot-
strap)

851851NROSC:
564; CPC 3-
5: 229

In hospitalBalancedLi and
Xing [38]

Support vector
machine, ran-
dom forest, XG-
Boost, decision
tree, and logis-
tic regression

Deletion719Internal valida-
tion

287335921769In hospitalBalancedDing et al
[39]

Logistic regres-
sion

Deletion4183Random sam-
pling (1:1)

4239842271Out of hospi-
tal

UnbalancedUehara et
al [40]

K-nearest
neighbor, deci-
sion tree, ran-
dom forest, sup-
port vector ma-
chine, logistic
regression, and
deep learning

Deletion—Random sam-
pling

—16,992ROSCj:
3095; CPC
1-2: 990

Out of hospi-
tal

UnbalancedShin et al
[41]

Deep learningDeletion64Random sam-
pling (8:2）

257321254Out of hospi-
tal

BalancedKawai et
al [42]

Logistic regres-
sion

Deletion80External vali-
dation (multi-
center)

194274172Out of hospi-
tal

BalancedImamura
et al [43]

XGBoostAlgorithm11,123Random sam-
pling

44,49255,6156191Out of hospi-
tal

UnbalancedHessulf et
al [44]

Logistic regres-
sion

Deletion131External vali-
dation

—13174Out of hospi-
tal

BalancedYoon et
al [45]

LightGBMlDeletion—Internal valida-
tion

157,654157,654ROSC:
11,996;

STDk:
11,833; 30-
day survival:
7760; CPC
1-2: 3673

Out of hospi-
tal

UnbalancedChang et
al [46]

Logistic regres-
sion

Deletion—Internal valida-
tion

26852685156Out of hospi-
tal

UnbalancedWang et
al [47]

Naïve BayesDeletion1054Internal valida-
tion

428653401128Out of hospi-
tal

UnbalancedShinada
et al [48]
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Model typeHandling
method for
missing val-
ues

Number of
cases in the
validation
set

Generation of
validation set

Number of
cases in the
training set

Total num-
ber of cas-
es

Number of
cases of
studied
events

Location of

CAa
Balance of
data (bal-
anced or un-
balanced)

Study

Logistic regres-
sion

Deletion——600600150Emergency
department
and out of
hospital

BalancedXu et al
[49]

Logistic regres-
sion, Modified
Early Warning
Score, and Na-
tional Early
Warning Score

No process-
ing

——325,502325,502623Emergency
department

UnbalancedTsai et al
[50]

National Early
Warning Score,
random forest,
artificial neural
network, and
deep learning

Algorithm486Internal valida-
tion

—486107ICUBalancedTang et al
[51]

Logistic regres-
sion, XGBoost,
artificial neural
network, and lo-
gistic regression

Deletion270,139Random sam-
pling

1,080,5541,350,6935431Emergency
department

UnbalancedKim et al
[52]

Decision tree,
random forest,
logistic regres-
sion, and artifi-
cial neural net-
work

Supplement34,452Random sam-
pling

—34,452573In hospitalUnbalancedChae et al
[53]

Emergency de-
partment, in-
hospital CA
score, Modified
Early Warning
Score, and
Rapid Emergen-
cy Medicine
Score

Deletion145,557External vali-
dation

—145,557240Emergency
department

UnbalancedSun et al
[54]

Random forestDeletion1194Random sam-
pling

35824776855Out of hospi-
tal

UnbalancedWong et
al [55]

Logistic regres-
sion

Deletion—Internal valida-
tion

29992999996Out of hospi-
tal

BalancedTran et al
[56]

Random forestDeletion24,897External vali-
dation

—24,897STD: 3549;
CPC 1-2:
1754

Out of hospi-
tal

UnbalancedRajen-
dram et al
[57]

Logistic regres-
sion, random
forest, and artifi-
cial neural net-
work

Supplement
(algorithm)

820Internal valida-
tion

—820410Out of hospi-
tal

BalancedRafi et al
[58]

Random forestDeletion34,134External vali-
dation (multi-
center)

119,477153,61112,729Out of hospi-
tal

UnbalancedLiu et al
[59]

Decision tree
and random for-
est

Deletion704Random sam-
pling (8:2)

28163520160Out of hospi-
tal

UnbalancedLin et al
[60]

Artificial neural
network

Deletion1654Internal valida-
tion (cross-
validation)

66208274286Out of hospi-
tal

UnbalancedKawai et
al [61]
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Model typeHandling
method for
missing val-
ues

Number of
cases in the
validation
set

Generation of
validation set

Number of
cases in the
training set

Total num-
ber of cas-
es

Number of
cases of
studied
events

Location of

CAa
Balance of
data (bal-
anced or un-
balanced)

Study

Logistic regres-
sion

Deletion419Internal valida-
tion (boot-
strap)

—419BDm: 77Out of hospi-
tal

BalancedItagaki et
al [62]

Logistic regres-
sion, random
forest, and
LightGBM

Supplement
(algorithm)

345Random sam-
pling

13811726399Out of hospi-
tal

UnbalancedHarris et
al [63]

LightGBM,
XGBoost, deci-
sion tree, ran-
dom forest, k-
nearest neigh-
bor, logistic re-
gression, and
deep learning

Deletion241 and
600

Internal valida-
tion (cross-
validation)

9571798379Out of hospi-
tal

UnbalancedHarford
et al [64]

Deep learningDeletion1445 and
2400

Random sam-
pling

57509595670Out of hospi-
tal

UnbalancedHarford
et al [65]

Artificial neural
network

No process-
ing

159Random sam-
pling

63779694In hospitalUnbalancedChung et
al [66]

HVecnDeletion——168,693168,69387,311In hospitalBalancedChi et al
[67]

CANPo scoreDeletion79External vali-
dation (multi-
center)

8015946In hospitalUnbalancedWang et
al [68]

Logistic regres-
sion

Deletion311External vali-
dation
(prospective)

671982643In hospitalBalancedBae et al
[69]

Logistic regres-
sion

Deletion——475475223In hospitalBalancedMueller
et al [70]

Deep learning
and Modified
Early Warning
Score

Algorithm159,003External vali-
dation (multi-
center)

173,368332,371425In hospitalUnbalancedLee et al
[71]

Logistic regres-
sion

Deletion3528External vali-
dation
(prospective)

47128240892—UnbalancedLim et al
[72]

Logistic regres-
sion, random
forest, and artifi-
cial neural net-
work

Deletion1632Random sam-
pling

652581572787Out of hospi-
tal

UnbalancedLo and
Siu [73]

Logistic regres-
sion

——Internal valida-
tion

192192168Out of hospi-
tal

BalancedLonsain
et al [74]

Logistic regres-
sion

—1874Internal valida-
tion

—1874761Out of hospi-
tal

BalancedMueller
et al [70]

Logistic regres-
sion

Supplement
(algorithm)

1025External vali-
dation
(prospective)

13292354382Out of hospi-
tal

BalancedNishioka
et al [75]

Logistic regres-
sion

DeletionSTD: 227;
CPC 1-2:
220

Random sam-
pling (7:3)

496 (survival
prognosis vali-
dation group)
and 489 (neu-
rological prog-
nosis valida-
tion group)

1432STD: 475;
CPC 1-2:
315

Out of hospi-
tal

BalancedBeom et
al [76]
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Model typeHandling
method for
missing val-
ues

Number of
cases in the
validation
set

Generation of
validation set

Number of
cases in the
training set

Total num-
ber of cas-
es

Number of
cases of
studied
events

Location of

CAa
Balance of
data (bal-
anced or un-
balanced)

Study

Logistic regres-
sion, XGBoost,
and support
vector machine

Deletion1071Random sam-
pling (9:1)

—107186Out of hospi-
tal

UnbalancedCheng et
al [77]

Random forest,
LightGBM, and
artificial neural
network

Deletion—Internal valida-
tion

39,60239,6021986Out of hospi-
tal

UnbalancedKim et al
[78]

Random forest,
XGBoost, and
logistic regres-
sion

Supplement
(algorithm)

—Internal valida-
tion

57395739105Out of hospi-
tal

BalancedSeo et al
[79]

Out-of-hospital
CA score

Deletion106External vali-
dation

—10661Out of hospi-
tal

BalancedSong et al
[80]

Logistic regres-
sion

Deletion—Internal valida-
tion

447447148Out of hospi-
tal

UnbalancedSun et al
[81]

Random forest,
CatBoost, and
logistic regres-
sion

Deletion331Internal valida-
tion

—331127Out of hospi-
tal

UnbalancedYoun et
al [82]

Ensemble learn-
ing and logistic
regression

Mean158 and
114

External vali-
dation
(prospective)

631903704Out of hospi-
tal

BalancedHeo et al
[83]

Logistic regres-
sion

No process-
ing

—Internal valida-
tion

262262114In hospital
and out of
hospital

BalancedWang et
al [84]

Modified Early
Warning Score,
logistic regres-
sion, artificial
neural network,
and random for-
est

Supplement45,819Random sam-
pling

168,488214,307993Emergency
department

UnbalancedHong et
al [85]

Modified Early
Warning Score
and deep learn-
ing

No process-
ing

8039External vali-
dation

—803911Inpatient
ward

UnbalancedCho et al
[86]

Logistic regres-
sion, support
vector machine,
random forest,
artificial neural
network, and
multilayer per-
ceptron

Deletion6381Internal valida-
tion (10-fold
cross-valida-
tion)

23,66830,04930-day mor-
tality:
13,329

Out of hospi-
tal

BalancedHirano et
al [87]

Logistic regres-
sion

—458Internal valida-
tion

458916114Out of hospi-
tal

UnbalancedOkada et
al [88]

ROSC after CA
score and ran-
dom forest

—18,918Internal valida-
tion

44,14163,0595190Out of hospi-
tal

UnbalancedLiu et al
[89]

Random forest—66Internal valida-
tion (5-fold
cross-valida-
tion)

9616255Out of hospi-
tal

UnbalancedElola et
al [90]

Logistic regres-
sion

Deletion84,249Internal valida-
tion

168,522252,771660Out of hospi-
tal

UnbalancedHsieh et
al [91]
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Model typeHandling
method for
missing val-
ues

Number of
cases in the
validation
set

Generation of
validation set

Number of
cases in the
training set

Total num-
ber of cas-
es

Number of
cases of
studied
events

Location of

CAa
Balance of
data (bal-
anced or un-
balanced)

Study

Logistic regres-
sion

—747Internal valida-
tion

19622709625Out of hospi-
tal

UnbalancedBaldi et
al [92]

Decision treeSupplement
(algorithm)

—Random sam-
pling

656656164Emergency
department

UnbalancedLi et al
[93]

National Early
Warning Score

Deletion1250External vali-
dation

—1250250Emergency
department

UnbalancedSrivi-
laithon et
al [94]

Logistic regres-
sion

Deletion——580580367In hospitalBalancedLee et al
[95]

AdaBoostp, ran-
dom forest,
naïve Bayes,
decision tree,
logistic regres-
sion, artificial
neural network,
and deep learn-
ing

No process-
ing

—Internal valida-
tion

43,56943,569124Emergency
department

UnbalancedLiu et al
[96]

Artificial neural
network, Modi-
fied Early
Warning Score,
logistic regres-
sion, and ran-
dom forest

Deletion261,926—261,926523,8521568Emergency
department

UnbalancedJang et al
[97]

Random forestImputation1608External vali-
dation
(prospective)

57187326432Out of hospi-
tal

UnbalancedSeki et al
[98]

Logistic regres-
sion, XGBoost,
support vector
machine, ran-
dom forest, and
artificial neural
network

Deletion3972Random sam-
pling (8:2)

15,86019,8322805Out of hospi-
tal

UnbalancedPark et al
[99]

Deep learning,
logistic regres-
sion, random
forest, and sup-
port vector ma-
chine

—8145—28,04536,190CPC 1-2:
3812; STD:
6435

Out of hospi-
tal

UnbalancedKwon et
al [100]

Logistic regres-
sion

—213External vali-
dation

524737CPC 1-2:
156; STD:
251

Out of hospi-
tal

UnbalancedKong et
al [101]

Deep learningSupplement
(algorithm)

660Internal valida-
tion

15842244250Out of hospi-
tal

UnbalancedHarford
et al
[102]

Deep learning,
Modified Early
Warning Score,
logistic regres-
sion, and ran-
dom forest

Supplement
(median)

3634External vali-
dation (multi-
center)

46,72550,359CA: 415;
IHM: 795

In hospitalUnbalancedKwon et
al [103]
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Model typeHandling
method for
missing val-
ues

Number of
cases in the
validation
set

Generation of
validation set

Number of
cases in the
training set

Total num-
ber of cas-
es

Number of
cases of
studied
events

Location of

CAa
Balance of
data (bal-
anced or un-
balanced)

Study

Logistic regres-
sion, decision
tree, random
forest, and XG-
Boost

Supplement
(mean)

43,569Internal valida-
tion

—43,569124Emergency
department

UnbalancedChang et
al [104]

Decision treeDeletion228Internal valida-
tion

228456CPC 1-2: 86Out of hospi-
tal

UnbalancedShin et al
[105]

Logistic regres-
sion and Simpli-
fied Acute
Physiology
Score II

Deletion111Internal valida-
tion (boot-
strap)

—11121Emergency
department

UnbalancedLee et al
[106]

Proposed scor-
ing system and
distance scoring
system

Deletion1025Internal valida-
tion (cross-
validation)

—102552Emergency
department

UnbalancedLiu et al
[107]

Decision treeDeletion1686External vali-
dation
(prospective)

36935379CPC 1-2:
205; 30-day
survival: 581

Out of hospi-
tal

UnbalancedGoto et al
[108]

Decision treeDeletion82,330Internal valida-
tion

307,896390,226CPC 1-2:
7769; 30-day
survival:
16,332

Out of hospi-
tal

UnbalancedGoto et al
[109]

Modified Early
Warning Score
and support
vector machine

Deletion925External vali-
dation

—925CA: 43;
IHM: 86

Emergency
department

UnbalancedHock
Ong et al
[110]

Logistic regres-
sion

Deletion635External vali-
dation
(prospective)

8621497244Out of hospi-
tal

UnbalancedHayakawa
et al
[111]

aCA: cardiac arrest.
bIHM: in-hospital mortality.
cCPC 3-5: poor cerebral performance category score 3 to 5.
dNot provided.
eCPC 1-2: good cerebral performance category score 1 to 2.
fLASSO: least absolute shrinkage and selection operator.
gXGBoost: Extreme Gradient Boosting.
hICU: intensive care unit.
iNROSC: nonreturn of spontaneous circulation.
jROSC: return of spontaneous circulation.
kSTD: survival to discharge.
lLightGBM: Light Gradient-Boosting Machine.
mBD: brain death.
nHVec: hierarchical vectorizer.
oCANP: Cardiac Arrest Neurological Prognosis.
pAdaBoost: Adaptive Boosting.

Risk of Bias in the Studies
After our exclusion of previously established scoring tools, a
quality assessment of 208 ML models, involving 17 types, was
conducted. In total, 24% (50/208) of these models originated
from case-control studies, which introduced a high risk of bias
in study participant selection. Regarding predictive factors, 1%

(2/208) of the models were linked to a high risk of bias owing
to the use of outcome information. Regarding outcome
assessment, as both CA and prognosis outcomes were clearly
defined using standard definitions, no additional predictive
factors were required, resulting in a low risk of bias in outcome
assessment. The included ML models were primarily derived
from large-sample statistical analyses; however, 9.1% (19/208)
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of the models were based on a very small number of cases, with
an event per variable value of <10. In addition, inappropriate
deletion methods were applied to address missing data in 65.4%
(136/208) of the models, and only univariate analysis was used

to screen for predictive factors in 22.6% (47/208) of the models,
ultimately resulting in a high risk of bias for 76.9% (160/208)
of the models in the domain of statistical analysis, as detailed
in Figure 2.

Figure 2. Assessment results for the risk of bias in the included models.

Meta-Analysis

CA Occurrence
A meta-analysis of ML models for predicting CA occurrence
in the training set was conducted through a random-effects
model. The analysis revealed a C-index of 0.84 (95% CI
0.82-0.86; 38/208, 18.3% of the models), sensitivity of 0.78
(95% CI 0.70-0.84; 34/208, 16.3% of the models), and
specificity of 0.84 (95% CI 0.80-0.88; 34/208, 16.3% of the
models). Similarly, a meta-analysis of ML models for predicting
CA occurrence in the validation set was conducted, yielding a
C-index of 0.89 (95% CI 0.87-0.91; 52/208, 25% of the models),
sensitivity of 0.83 (95% CI 0.78-0.87; 43/208, 20.7% of the
models), and specificity of 0.93 (95% CI 0.88-0.96; 43/208,
20.7% of the models; Multimedia Appendices 6-13).

Because of the diverse sources of modeling data from both
balanced and imbalanced datasets and the variety of models, a
subgroup analysis was conducted based on the data model type.
The detailed results are presented in Multimedia Appendices
14-18.

Favorable Neurological Outcomes (CPC 1-2)
A meta-analysis of ML models for predicting CPC 1-2 in the
training set was conducted using a random-effects model. The
results indicated a C-index of 0.90 (95% CI 0.89-0.92; 21/208,
10.1% of the models), sensitivity of 0.72 (95% CI 0.47-0.98;
15/208, 7.2% of the models), and specificity of 0.85 (95% CI
0.79-0.90; 15/208, 7.2% of the models). Similarly, the

meta-analysis of ML models for predicting CPC 1-2 in the
validation set revealed a C-index of 0.86 (95% CI 0.85-0.87;
69/208, 33.2% of the models), sensitivity of 0.72 (95% CI
0.61-0.81; 44/208, 21.2% of the models), and specificity of 0.79
(95% CI 0.66-0.88; 44/208, 21.2% of the models; Multimedia
Appendix 19, and Table S1 and Figures S1-S3 in Multimedia
Appendix 20).

It was hypothesized that there might have been differences in
CPC 1-2 between patients experiencing IHCA and OHCA. As
the real-world data closely resembled balanced datasets, a
subgroup analysis was conducted exclusively on the IHCA and
OHCA populations. The detailed results are shown in
Multimedia Appendix 19, and Table S1 and subgroup analysis
report S1 in Multimedia Appendix 20.

CA Mortality
A random-effects model was used for the meta-analysis of ML
models for predicting CA mortality in the training set. The
analysis indicated a C-index of 0.80 (95% CI 0.76-0.84; 14/208,
6.7% of the models), sensitivity of 0.82 (95% CI 0.58-0.94;
7/208, 3.4% of the models), and specificity of 0.76 (95% CI
0.51-0.91; 7/208, 3.4% of the models). Similarly, a
meta-analysis of ML models for predicting CA mortality in the
validation set revealed a C-index of 0.85 (95% CI 0.82-0.87;
28/208, 13.5% of the models), sensitivity of 0.83 (95% CI
0.79-0.87; 23/208, 11.1% of the models), and specificity of 0.79
(95% CI 0.74-0.83; 23/208, 11.1% of the models; Tables S2-S3
and Figures S4-S6 in Multimedia Appendix 20).
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It was thought that there might have been differences in
mortality rates between patients experiencing IHCA and OHCA.
Given that the real-world data closely resembled balanced
datasets, a subgroup analysis was conducted exclusively on the
IHCA and OHCA populations. The detailed analysis results are
provided in Tables S2-S3 and subgroup analysis report S2 in
Multimedia Appendix 20.

ROSC Analysis
A meta-analysis of ML models for predicting ROSC following
CA in the training set was conducted using a random-effects
model. The analysis yielded a C-index of 0.83 (95% CI
0.79-0.88; 10/208, 4.8% of the models), sensitivity of 0.52 (95%
CI 0.31-0.73; 8/208, 3.8% of the models), and specificity of
0.91 (95% CI 0.88-0.93; 8/208, 3.8% of the models). Similarly,
a meta-analysis of ML models for predicting ROSC in the
validation set revealed a C-index of 0.77 (95% CI 0.74-0.80;
13/208, 6.3% of the models), sensitivity of 0.53 (95% CI
0.31-0.74; 6/208, 2.9% of the models), and specificity of 0.88
(95% CI 0.71-0.96; 6/208, 2.9% of the models; Tables S4-S5
and Figures S7-S9 in Multimedia Appendix 20).

It was postulated that there may have been differences in ROSC
between patients who experienced IHCA and OHCA. As the
real-world data closely resembled balanced datasets, a subgroup
analysis was performed solely on the IHCA and OHCA
populations. The comprehensive analysis results are provided
in Tables S4-S5 and subgroup analysis report S3 in Multimedia
Appendix 20.

Modeling Variables
Modeling variables were extracted and weighted for analysis
from the 93 studies on ML models for predicting CA and CPC
1-2. Among the 28 studies on predicting CA, the variables with
the highest weights were respiratory rate (n=22, 79%), blood
pressure (n=20, 71%), age (n=19, 68%), temperature (n=19,
68%), oxygen saturation (n=15, 54%), and airway (n=9, 32%).
Among the 42 studies on predicting CPC 1-2, the results showed
that the modeling variables with the highest weights in the IHCA
group were rhythm (shockable or nonshockable; 8/10, 80%),
age (7/10, 70%), medication use (6/10, 60%), gender (5/10,
50%), and Glasgow Coma Scale (GCS; 5/10, 50%). The
modeling variables with the highest weights in the OHCA group
were age (25/32, 78%), rhythm (shockable or nonshockable;
24/32, 75%), medication use (18/32, 56%), ROSC (14/32, 44%),
gender (12/32, 38%), no-flow time (resuscitation duration;
12/32, 38%), EMS transport (scene interval, arrival time, and
response time; 12/32, 38%), defibrillation (11/32, 34%), and
GCS (6/32, 19%). The detailed results of the modeling variables
and weight analysis are presented in Tables S6 and S7 in
Multimedia Appendix 20.

Discussion

Summary of the Principal Findings
It was observed that ML has garnered widespread attention
among numerous researchers in the management of CA,
particularly focusing on early CA risk prediction in both
in-hospital and out-of-hospital populations. Our systematic
review and meta-analysis demonstrated a relatively favorable

predictive value of ML in the validation set for forecasting CA
risk, with a C-index of 0.89. Similarly, ML also appeared to
exhibit a relatively favorable predictive value for neurological
outcomes (CPC 1-2) and mortality in patients who had already
experienced CA, with pooled C-indexes of 0.86 and 0.85,
respectively. However, in predicting ROSC following CA, ML
seemed to display a predictive value comparable to that of
traditional scoring tools, with a pooled C-index of 0.77.

Comparison With Previous Reviews
Currently, in clinical practice, classic early warning scoring
tools, including the Cardiac Arrest Risk Triage (CART) score,
Modified Early Warning Score, and VitalPAC Early Warning
Score, are commonly used for predicting the occurrence of CA.
A previous review by Churpek et al [112] found that, among
these tools, the CART had the highest accuracy in predicting
CA compared to the others. However, the CART had certain
limitations, with an area under the curve of 0.83, sensitivity
calculated at 0.61 based on the optimal Youden index, and a
specificity of 0.84. Moreover, the CART has not been externally
validated, and the included population is limited to ward
inpatients. Therefore, whether the CART can dynamically
monitor the occurrence of CA in real-time clinical events,
improve rescue success rates, and enhance patient outcomes
requires prospective validation using high-quality, large-sample
external data. Our summarized results of the ML models reveal
that ML has certain clinical predictive value in forecasting the
occurrence of CA and demonstrates relatively favorable
accuracy, with an overall C-index of 0.89, sensitivity of 0.83,
and specificity of 0.93. Comparatively, this is superior to
previous scoring tools, providing a certain clinical basis for the
future establishment of more reliable early warning scoring
systems for predicting CA.

In a recent review by Carrick et al [113], the accuracy of scoring
tools for predicting survival or neurological outcomes following
CA, such as the OHCA score, Cardiac Arrest Hospital Prognosis
score, and Good Outcome Following Attempted Resuscitation
score, was summarized. These 3 tools, which have undergone
rigorous clinical validation, exhibited relatively high accuracy,
with C-indexes of 0.79, 0.83, and 0.76, respectively. However,
our summarized results of ML models suggested that ML seems
to exhibit more favorable accuracy, with an overall C-index of
0.86, sensitivity of 0.72, and specificity of 0.79 for predicting
favorable neurological outcomes. For predicting CA mortality,
ML achieved an overall C-index of 0.85, sensitivity of 0.83,
and specificity of 0.79.

Among various ROSC prediction models for CA that have been
developed in the current clinical field, the ROSC after CA score
developed by Gräsner et al [114] using data from 5471 patients
with OHCA from the German Resuscitation Registry has
attracted the most attention. It has been externally validated in
several European and Asian countries, demonstrating relatively
good accuracy, with an area under the curve of 0.736 in a recent
large-scale external validation study [115]. However, our
summarized results of ML models indicated that the overall
C-index of ML was 0.77, with a sensitivity of 0.53 and
specificity of 0.88. Comparatively, these ML models did not
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seem to significantly outperform traditional scoring tools in
predicting ROSC outcomes for patients with CA.

Modeling Variables in ML
In our review, the modeling variables of the discussed models
primarily originated from common clinical features. It was
found that variables such as respiratory rate, blood pressure,
age, temperature, oxygen saturation, and airway were key
predictors in existing ML models, and they also constitute
critical variables in traditional scoring models [116,117].
Therefore, the impact of these variables on predicting the
occurrence of CA is well established. However, these predictors
differ to some extent from the findings of recent studies, such
as the review by Andersen et al [3], which identified CA risk
factors. The review by Andersen et al [3] suggested that age
was more associated with post-CA prognosis and reduced
survival rates, whereas a history of cardiac diseases such as
myocardial infarction, arrhythmias, and heart failure was
recognized as the most common risk factor for CA occurrence.
Other potential risk factors included the use of certain
medications, such as those that prolong the QT interval, opioids,
and sedatives. Nonetheless, the review concurred that respiratory
function and body temperature also had predictive significance
for CA, with early interventions targeting these factors being
crucial for achieving reversible outcomes [118].

In the models we reviewed that aimed to predict CPC 1-2
outcomes in patients with IHCA and OHCA, the modeling
variables with the highest weight were age, rhythm (shockable
or nonshockable), medication use, ROSC, gender, no-flow time
(resuscitation duration), defibrillation, EMS transport (scene
interval, arrival time, and response time), and GCS. When
compared to the review by Sandroni et al [119], which
highlighted the predictive value of GCS, biological markers
(eg, neuron-specific enolase), and electrophysiological indicators
(eg, somatosensory evoked potential) for favorable neurological
outcomes, our findings show some differences. In addition,
complex variables such as medical imaging might need
consideration in clinical practice. In recent years, AI methods
have been widely used in medical imaging for identifying
disease progression and prognosis, demonstrating superior
accuracy and cost-effectiveness compared to traditional clinical
feature–based predictive models [120]. Therefore, in the
prediction of CA occurrence and prognosis, the high-value
variables identified in recent studies, such as electrocardiography
[121] and ultrasound [122], are not reflected in traditional
scoring tools. This raises the question of whether it is worth
further validating these more complex variables and attempting
to identify more efficient predictive factors to develop or update
risk-scoring tools in the field of CA.

Clinical Applications of ML
Our study reveals that ML methods appear to outperform
traditional scoring tools in predicting the occurrence and
progression of CA. Therefore, the development of simple
auxiliary tools based on ML theory is recommended to facilitate
rapid risk screening of CA for both in-hospital and
out-of-hospital patients, enabling timely formulation of
appropriate treatment strategies. These ML-based CA prediction
models would be particularly beneficial for emergency

departments and out-of-hospital response teams. Under the
current circumstances, in which emergency departments
worldwide are facing challenges of overcrowding, resource
limitations, and a high influx of patients who are critically ill
[123-125], relying solely on human assessment of CA risk based
on various clinical data could pose significant challenges to the
efficiency of CA treatment. Furthermore, the complexity and
volume of clinical data, including patient demographics,
laboratory results, imaging data, and textual notes from health
care providers, are continuously increasing. Thus, using ML to
analyze large datasets and handle complex variables, such as
clinical images, seems to be a more feasible approach [126].
The development of simplified ML prediction tools or intelligent
reading systems has the potential to mitigate risks such as
treatment delays and poor prognoses in patients with CA in
emergency departments. These tools could also enhance health
care service quality, reduce human resource costs, and support
the formulation of targeted therapeutic strategies. Similarly,
ML models that incorporate real-time input of variables such
as vital signs, electrocardiograms, and response times for
out-of-hospital rescue scenarios can accurately predict positive
CA events. This capability aids response teams in avoiding
repeated and frequent evaluations, enabling timely decisions
on whether to implement preventive therapeutic interventions
to avert CA or, in cases of CA occurrence, whether to initiate
extracorporeal membrane oxygenation cardiopulmonary
resuscitation to improve survival rates [127,128].

In addition, our findings indicate that the balance of data
significantly impacts the outcomes of ML model construction
in CA-related studies. This effect is particularly pronounced in
scenarios in which the outcome metrics exhibit severe
imbalance. For instance, in predicting the occurrence of CA in
our study, the rationale for the selected predictive factors
remained challenging, and the accuracy of the constructed model
was often influenced by the overwhelming proportion of
negative events [129]. In such cases, the C-index hardly
represented the actual outcome prediction accuracy of the model.
Therefore, in our study, the sensitivity and specificity of ML
models were also summarized [130]. The data balance in the
studies we included was primarily addressed using
oversampling, but these studies rarely considered validating
models constructed from balanced data against imbalanced data.
This raises certain doubts regarding the accuracy of existing
models constructed based on balanced data when applied to
real-world cases of CA. Our study reveals that CA events in the
real world are often inherently imbalanced. Therefore, we
recommended prioritizing the use of models constructed from
real-world data or validating models constructed from balanced
data against real-world data to ascertain their true effectiveness
[131].

Ethical Considerations and Model Selection
Although ML models demonstrated relatively satisfactory
accuracy in predicting the occurrence and progression of CA
in our study, several common challenges inherent to ML
modeling should be acknowledged. For instance, compared to
traditional scoring tools, ML models rely on general algorithms
to generate desired outputs in response to specific input data, a
process characterized by less explicit rules [132]. In addition,
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algorithmic biases may result in unrepresentative datasets [133],
and the reliability of model validation remains a concern [134].
These issues underscore the ethical challenges associated with
the application of AI in medicine, including result
interpretability, algorithmic transparency, predictive fairness,
and data privacy [135,136]. These potential ethical concerns
are specifically reflected in a patient survey study on the
prevention of CA occurrence and development conducted by
Maris et al [137]. The study results indicate that, while AI-driven
CA treatment decisions offer objective data, the absence of
patient involvement and informed consent, along with the
interpretability of the model, suggest that the overuse of AI
technology may ultimately undermine patient trust in physicians.
This, in turn, poses challenges to the current high-quality health
care goal of patient-centered care [138] in the field of
cardiovascular disease treatment, which is built on shared
decision-making [139], respect for patient autonomy, and mutual
trust. Therefore, in the high-risk and critical treatment of CA,
it seems that physicians should continue to make final decisions
in collaboration with ML models based on evidence-based
clinical experience and the values of the patients.

Therefore, based on ethical considerations, the choice of
different models during research remains challenging as model
interpretability and accuracy are factors that need to be
considered comprehensively during model construction [140].
Selecting models with higher interpretability, such as LR, Cox
regression, or DTs, can facilitate better communication,
interaction, and trust between health care providers and patients.
However, these models may have limited predictive value for
certain outcome events [141]. On the other hand, models whose
interpretability is poorer, including neural networks, support
vector machines (SVMs), and Extreme Gradient Boosting, often
perform exceptionally well in predicting outcomes [142]. At
this point, it may become necessary to grant patients and their
families greater rights to information and autonomy, enabling
their active participation in medical decision-making. In our
research, LR was the most frequently used model type as it
facilitated the development of predictive nomograms, which
are simple and easily applicable tools.

Among the 17 ML models that we included, artificial neural
networks, RF, and LR appeared to demonstrate relatively ideal
predictive value in forecasting the occurrence of CA and were
more frequently used by clinical researchers. In predicting
neurological outcomes, our study found that LR remained the
model most commonly selected by clinicians, followed by DT,
RF, SVM, and others. If we aim to develop a simplified
predictive scoring scale to assist in clinical practice, priority
may be given to using LR for its development and subsequent
updates. This preference arises because, according to our
research findings, LR demonstrates relatively satisfactory
accuracy and facilitates the construction of straightforward and
practical predictive nomograms [143,144]. Furthermore,
considering the interpretability of models is essential in
real-world clinical practice. However, if the objective is to
develop auxiliary applications for disease surveillance and
prediction in clinical settings, alternative, more complex models
may be considered. For example, models such as neural
networks, SVM, and Extreme Gradient Boosting, which

demonstrated higher accuracy in our study, could be appropriate
choices. On the other hand, when dealing with image-based
features, such as medical imaging or electrocardiograms, it may
be necessary to use models with lower interpretability, such as
those based on deep learning [145], rather than confining the
analysis to commonly used clinical features with stronger
interpretability.

Prospects
In addition, we observed a minimal number of studies that
constructed models based on artificial neural networks and
ensemble learning, which exhibited highly favorable results,
indicating that further validation of these models may be
required in future research. Currently, in clinical practice, there
is an increasing preference for using simple scoring tools based
on interpretable clinical features. While opting for such tools
may reduce the ethical dilemmas encountered in clinical settings,
relying solely on traditional methods and highly interpretable
clinical indicators, such as the Delphi method, during the
development of these scoring tools seems to introduce
significant bias into the constructed models. Therefore, we
considered using multicenter real-world big data, using ML
approaches, and incorporating a broader range of cases and
clinical features to construct interpretable scoring tools and
promote their application. Regarding the processing of clinical
image features, our expectation lies in the development of
intelligent reading tools based on deep learning methods.
Nonetheless, in our study, there was limited research on deep
learning based on medical imaging and ultrasounds, particularly
in the field of CA, where such research remains relatively
underexplored. Therefore, future research on CA should actively
explore the integration of medical imaging and ultrasonography.
In selecting datasets and algorithms for the development of AI
prediction models, it is crucial to rigorously investigate and
address the ethical shortcomings of AI applications in health
care. Efforts should be made to minimize the influence of
individual characteristics such as gender, race, skin color, and
socioeconomic status, ensuring that population representation
and sample size are carefully considered. Sufficient numbers
and the quality of representative populations should be selected
from diverse regions, ethnicities, and age groups to establish
standardized big data models, thereby maximizing the potential
of AI technologies [146,147]. It is essential to adopt a
multifaceted, interdisciplinary approach; strengthen data
protection systems to prevent the leakage of patient information;
and conduct extensive reviews to avoid biases [148], ultimately
preventing unfairness toward individuals or patient populations
in the development of intelligent diagnostic or predictive tools
for CA [149,150].

Advantages and Limitations of This Study
Our study has 3 strengths. First, it represents the first attempt
to summarize evidence comparing ML models and scoring tools
in predicting the occurrence and prognosis of CA, thereby
providing an evidence-based foundation for the subsequent
clinical update and development of new scoring tools or AI
early warning systems in the field of CA. Second, our study
encompassed 93 original studies with large sample sizes,
covering 14 countries and involving 5,729,721 patients,
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significantly enhancing the strength of our evidence. Third, we
conducted a detailed discussion of the accuracy of different
models on balanced and imbalanced data. However, this study
also had the following limitations. First, most of the original
studies on the prediction of CA occurrence (28/93, 30%)
constructed models based solely on imbalanced data without
validating them on balanced data. Second, many model
validation processes primarily used internal validation through
random sampling, lacking external multicenter validation to
examine their generalizability. Third, due to potential differences
in the predictive performance of different models for outcome
events, despite our in-depth discussion of various ML models
and datasets, the limited number of studies on certain ML
models restricted our ability to interpret the results of ML
applications in CA more comprehensively. Fourth, due to the
small number of included studies, we did not strictly distinguish
between IHCA and OHCA populations when summarizing the
predictors of CA. Fifth, as this review only included

English-language original studies, there may be potential
language bias.

Conclusions
Current traditional scoring tools have demonstrated relatively
ideal efficacy in predicting the occurrence and prognosis of CA.
On the basis of this review, ML appeared to offer greater
advantages in predicting the occurrence of CA, neurological
functional prognosis, and mortality outcomes. However, for
predicting outcomes associated with ROSC after CA, ML
models did not seem to significantly outperform traditional
models. Therefore, in future studies on CA, researchers may
explore the systematic updating of traditional scoring tools
based on the superior performance of ML in specific outcomes.
This approach would enable the implementation of AI-driven
enhancements within complex and diverse clinical data, thereby
assisting clinicians in monitoring and providing early warnings
for multiple predictive factors. For outcomes that are still
unpredictable, multicenter large-sample studies are warranted.
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CPC 1-2: good cerebral performance category score 1 to 2
DT: decision tree
EMS: emergency medical services
GCS: Glasgow Coma Scale
IHCA: in-hospital cardiac arrest
LR: logistic regression
ML: machine learning
OHCA: out-of-hospital cardiac arrest
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PROBAST: Prediction Model Risk of Bias Assessment Tool
RF: random forest
ROSC: return of spontaneous circulation
SVM: support vector machine
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