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Abstract

Background: In-hospital cardiac arrest (IHCA) is a severe and sudden medical emergency that is characterized by the abrupt
cessation of circulatory function, leading to death or irreversible organ damage if not addressed immediately. Emergency department
(ED)–based IHCA (EDCA) accounts for 10% to 20% of all IHCA cases. Early detection of EDCA is crucial, yet identifying
subtle signs of cardiac deterioration is challenging. Traditional EDCA prediction methods primarily rely on structured vital signs
or electrocardiogram (ECG) signals, which require additional preprocessing or specialized devices. This study introduces a novel
approach using image-based 12-lead ECG data obtained at ED triage, leveraging the inherent richness of visual ECG patterns to
enhance prediction and integration into clinical workflows.

Objective: This study aims to address the challenge of early detection of EDCA by developing an innovative deep learning
model, the ECG-Image-Aware Network (EIANet), which uses 12-lead ECG images for early prediction of EDCA. By focusing
on readily available triage ECG images, this research seeks to create a practical and accessible solution that seamlessly integrates
into real-world ED workflows.

Methods: For adult patients with EDCA (cases), 12-lead ECG images at ED triage were obtained from 2 independent data sets:
National Taiwan University Hospital (NTUH) and Far Eastern Memorial Hospital (FEMH). Control ECGs were randomly selected
from adult ED patients without cardiac arrest during the same study period. In EIANet, ECG images were first converted to binary
form, followed by noise reduction, connected component analysis, and morphological opening. A spatial attention module was
incorporated into the ResNet50 architecture to enhance feature extraction, and a custom binary recall loss (BRLoss) was used to
balance precision and recall, addressing slight data set imbalance. The model was developed and internally validated on the
NTUH-ECG data set and was externally validated on an independent FEMH-ECG data set. The model performance was evaluated
using the F1-score, area under the receiver operating characteristic curve (AUROC), and area under the precision-recall curve
(AUPRC).

Results: There were 571 case ECGs and 826 control ECGs in the NTUH data set and 378 case ECGs and 713 control ECGs in
the FEMH data set. The novel EIANet model achieved an F1-score of 0.805, AUROC of 0.896, and AUPRC of 0.842 on the
NTUH-ECG data set with a 40% positive sample ratio. It achieved an F1-score of 0.650, AUROC of 0.803, and AUPRC of 0.678
on the FEMH-ECG data set with a 34.6% positive sample ratio. The feature map showed that the region of interest in the ECG
was the ST segment.
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Conclusions: EIANet demonstrates promising potential for accurately predicting EDCA using triage ECG images, offering an
effective solution for early detection of high-risk cases in emergency settings. This approach may enhance the ability of health
care professionals to make timely decisions, with the potential to improve patient outcomes by enabling earlier interventions for
EDCA.

(J Med Internet Res 2025;27:e67576) doi: 10.2196/67576

KEYWORDS

cardiac arrest; emergency department; deep learning; computer vision; electrocardiogram

Introduction

In-hospital cardiac arrest (IHCA) differs significantly from
out-of-hospital cardiac arrest (OHCA), with the former often
occurring in patients with significant comorbidities rather than
as sudden cardiac events [1-3]. Despite its clinical significance,
IHCA has received less research attention. Recent studies using
data from the American Heart Association’s Get With the
Guidelines-Resuscitation registry revealed an IHCA incidence
of approximately 10 per 1000 bed-days (290,000 cases
annually), with a survival rate of 15% to 20% at hospital
discharge [4,5]. Emergency department (ED)–based IHCA
(EDCA), accounting for 10% to 20% of all IHCA cases [6], is
associated with higher mortality and less well-defined causes
than inpatient cardiac arrest (IPCA) [7]. ED crowding, coupled
with infrequent monitoring and unstable conditions, further
increases EDCA risk [8].

Most patients experiencing IHCA show clinical deterioration
hours before arrest, leading to the adoption of rule-based early
warning scores to detect high-risk individuals [9-11]. With
advancements in information technology, the use of machine
learning for predicting IHCA has become increasingly
prominent. Recent studies have demonstrated the potential of
machine learning and statistical approaches in disease prediction,
including heart disease analysis [12]. Although some deep
learning models using structured data, such as vital signs
[13-15], exist for predicting IPCA, they are not tailored for
ED-specific conditions, highlighting the need for a dedicated
ED-focused predictive model to address unique challenges in
this setting. Using both triage and vital sign time-series data,
we recently developed and validated a deep learning–based
prediction tool for EDCA [16].

Electrocardiogram (ECG) is an old tool in clinical medicine but
has re-emerged for the prediction of low left ventricular ejection
fraction [17], arrhythmia [18], dyskalemia [19], or even
longer-term mortality [20]. A recent randomized controlled trial
using artificial intelligence–enabled ECG to identify hospitalized
patients with a high risk of mortality found that the
implementation of the artificial intelligence–enabled ECG alert
was associated with a significant reduction in all-cause mortality
within 90 days [21]. This finding is somewhat surprising, as a
recent Cochrane review did not find strong evidence supporting
the utility of early warning systems and rapid response systems
for the prevention of patient deterioration in acute adult hospital
wards [22]. To our knowledge, only 1 study has analyzed ECGs

solely from inpatients to predict cardiac arrest within 24 hours
of ECG acquisition [23]. This study analyzed signal-based
ECGs, which require complex signal processing before analysis.
In addition, XML-based protocols, commonly used by several
ECG device manufacturers, store structured ECG data and
enable integration with systems like General Electric’s MUSE
server for advanced diagnostics. However, such reliance on
proprietary software and infrastructure limits their applicability
in the ED, which has diverse device environments. In contrast,
image-based 12-lead ECG models leverage universally available
PDF reports generated at ED triage. This approach eliminates
the need for additional preprocessing or proprietary systems,
providing a more accessible, flexible, and scalable solution that
seamlessly integrates into real-world clinical workflows.

Accordingly, this study explored an innovative approach by
using triage 12-lead ECG images as a more accessible alternative
for predicting imminent cardiac arrest in the ED setting. We
leveraged ECG reports, commonly available in PDF, and
converted them into image-based data inputs to develop a deep
learning–based predictive system for IHCA. We also used 2
independent ED data sets for development and validation of
our model.

Methods

System Overview
We present a novel cardiac arrest prediction model called the
ECG-Image-Aware Network (EIANet) that was designed to
predict IHCA with high accuracy. Our study adhered to
the Guidelines for Developing and Reporting Machine Learning
Predictive Models in Biomedical Research [24]. EIANet
operated in 3 key stages, as outlined in Figure 1. In the first
stage, ECG waveform images were extracted from triage ECG
reports obtained from the National Taiwan University Hospital
(NTUH). The NTUH is a tertiary academic medical center with
approximately 2400 beds and 100,000 ED visits per year. We
obtained 12-lead ECG images at ED triage for adult patients
with EDCA (cases) from 2011 to 2019. We defined EDCA as
patients who arrived in the ED with vital signs and later
developed cardiac arrest in the ED. OHCAs with or without
return of spontaneous circulation on ED arrival were excluded.
We focused on treated EDCA, so patients with a
do-not-resuscitate order were also excluded. The EDCA cases
were from the same pool as in our previous studies on EDCA
[16,25]. Control ECGs were randomly selected from adult ED
patients without cardiac arrest during the same study period.
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Figure 1. Overview of the proposed ECG-Image-Aware Network (EIANet) model. SA: spatial attention.

The ECG images were subjected to a thorough preprocessing
step, where extraneous information, artifacts, and noise were
removed, ensuring that the data fed into the model were clean
and of high quality for more accurate analysis. In the second
stage, the preprocessed ECG images were passed through a
deep learning model, which was enhanced using a spatial
attention module. This module allowed the model to focus on
more relevant areas of the ECG image, identifying subtle
patterns and features critical for predicting cardiac arrest.
Finally, in the third stage, the model’s output was combined
with the recall metric to calculate the binary recall loss
(BRLoss). This custom loss function helps address slight class
imbalance by prioritizing recall during training, leading to more
balanced predictions, particularly in rare IHCA cases.

ECG Data Set for IHCA Prediction

NTUH-ECG Data Set
The NTUH-ECG data set is a comprehensive collection of ECG
data sourced from ED patients at NTUH, covering a significant
period from 2011 to 2019. During this period, the data set was
meticulously curated to include as many positive instances of
EDCA as possible, representing critical cases that pose serious

risks to patient safety. To balance the data set, random samples
of ECGs from patients who did not experience EDCA were
collected to serve as negative examples. Distinct from
conventional ECG data sets that primarily focus on raw signal
data, the NTUH-ECG data set features detailed ECG PDF
reports containing 12-lead waveforms (I, II, III, aVR, aVL, aVF,
and V1-V6) captured over 10-second intervals at ED triage.
The primary objective of this data set is to predict the likelihood
of a patient experiencing cardiac arrest during the ED stay, a
task of immense clinical significance. The data set comprised
a total of 571 cardiac arrest events (positive samples) and 826
noncardiac arrest events (negative samples), resulting in a
positive sample ratio of 40.1%. For model training and
evaluation, the data were randomly split into training and testing
sets, with 80% allocated for training and 20% allocated for
testing. This division yielded a test set containing 280 data
points, which included 114 positive cases and 166 negative
cases. The key characteristics of the NTUH-ECG data set are
summarized in Table 1, providing valuable insights into its
structure and composition for researchers and clinicians alike.
The median time to cardiopulmonary resuscitation was
approximately 5 to 7 hours for the cases and controls.

Table 1. Basic characteristics of the training and testing data sets for the National Taiwan University Hospital electrocardiogram (NTUH-ECG) data
set.

NTUH-ECG testing data set (n=280)NTUH-ECG training data set (n=1117)Variable

63.7 (17.2)65.9 (15.9)Age (years), mean (SD)

141 (50.4)608 (54.4)Male, n (%)

114 (40.7)457 (40.9)Annotated positive, n (%)

5.1 (1.9-17.9)7.4 (2.5-23.5)Time to CPRa (hours), median (IQR)

166 (59.3)660 (59.1)Annotated negative, n (%)

aCPR: cardiopulmonary resuscitation.

J Med Internet Res 2025 | vol. 27 | e67576 | p. 3https://www.jmir.org/2025/1/e67576
(page number not for citation purposes)

Lu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Far Eastern Memorial Hospital ECG Data Set
The Far Eastern Memorial Hospital (FEMH)-ECG data set
consisted of ECG images collected from ED patients presenting
to the FEMH from 2016 to 2023. The FEMH is a tertiary
academic medical center with approximately 1200 beds and
130,000 ED visits per year. We obtained 12-lead ECG images
at ED triage for adult patients with ED cardiac arrest (cases)
from 2016 to 2023. Control ECGs were randomly selected from
adult ED patients without cardiac arrest during the same study

period. Each image was carefully annotated to indicate whether
the patient experienced an EDCA during their ED stay. The
data format closely mirrors that of the NTUH-ECG data set,
with the images being directly extracted from ECG PDF reports.
However, the distribution of positive samples in FEMH-ECG
was significantly lower than in NTUH-ECG, at 378 positive
cases and 713 negative cases, which equates to a positive sample
proportion of approximately 34.6%. Table 2 shows the basic
characteristics of the FEMH-ECG data set. The median time to
cardiopulmonary resuscitation was approximately 2.5 hours.

Table 2. Basic characteristics of the positive and negative samples for the Far Eastern Memorial Hospital electrocardiogram (FEMH-ECG) data set.

FEMH-ECG negative samples (n=713)FEMH-ECG positive samples (n=378)Variable

64.4 (17.9)68.3 (14.9)Age (years), mean (SD)

389 (54.6)252 (66.7)Male, n (%)

—b2.5 (0.7-8.9)Time to CPRa (hours), median (IQR)

aCPR: cardiopulmonary resuscitation.
bNot applicable.

Ethical Considerations
The NTUH study was approved by the NTUH Institutional
Review Board (reference number: 202304129RINC), which
waived the requirement for patient informed consent. The FEMH
study was approved by the FEMH Institutional Review Board
(reference number: 112193-F), which also waived the
requirement for patient informed consent.

Preprocessing
Although deep learning models can automatically extract
relevant features from input data, their performance can be
significantly improved when noisy or unclean data are addressed
through careful preprocessing. In our approach, we began by
converting the RGB ECG image into a binary format using a
thresholding technique. Specifically, we first used Gaussian
blur and thresholding to remove unnecessary elements such as
thin grid lines. By applying a threshold, pixels exceeding the
threshold value were turned black (0), while those below the
threshold were converted to white (255). This step ensured that
distracting elements were removed, enhancing the clarity of the
ECG waveform for further analysis.

Next, we used a connected component algorithm to identify and
remove specific unwanted components such as lead labels and
other extraneous noise in the image. These elements, if left
unaddressed, can interfere with the accuracy of the model’s
predictions. To further refine the image, we applied a
morphological opening operation, which consists of erosion
followed by dilation, using a 3 × 3 structuring element. This
process smoothed the ECG lines and reduced minor noise,
ensuring that the primary features of the ECG waveform were
preserved while removing small, irrelevant artifacts. This
enhanced the overall quality of the image, making it more
suitable for deep learning analysis.

To complete the preprocessing, we applied a Gaussian blur to
the image, which helped minimize any remaining noise that
may have been left after previous steps. The ECG image was

then transformed to gray scale, and we used histogram
equalization to improve the contrast between the ECG waveform
and any residual background noise. This step ensured that the
critical features of the waveform were more distinct, allowing
the deep learning model to focus on the most relevant data
points. In the final stage of preprocessing, the image was
reconverted to binary format, accentuating the essential features
necessary for more accurate and effective analysis by the model,
ultimately improving its ability to predict IHCA.

Spatial Attention
In our model, we used the ResNet50 [26] architecture as the
foundational framework due to its robust performance in
handling complex image data. ResNet50’s use of residual
connections enhances the learning capacity of deep networks
by facilitating the flow of information and mitigating issues
such as vanishing gradients. We integrated an attention
mechanism into the network. This integration ensured that the
model can better identify subtle, critical signals in the ECG
data, ultimately enhancing its predictive performance and
improving patient outcomes.

Following the concept of the Convolutional Block Attention
Module [27], we strategically positioned spatial attention blocks
after each of the first 4 layers, as Figure 2. This design choice
was motivated by 2 primary considerations. First, the nature of
ECG waveforms, which display both fine and coarse-grained
patterns, necessitates a multiscale approach to feature extraction.
By placing spatial attention blocks at the front, middle, and end
of the network, we enhanced the model’s ability to capture and
optimize features across varying scales. This is crucial for
accurately interpreting the diverse characteristics present in
ECG signals, which can vary significantly in amplitude and
duration due to different physiological conditions. Second, we
intentionally limited the number of attention blocks to mitigate
the risk of overfitting during the training process. By judiciously
inserting these blocks after each layer, we balanced the
complexity of the model with its generalization capabilities.
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Figure 2. We inserted a spatial attention (SA) block after each layer and before the next layer.

The incorporation of the spatial attention mechanism allowed
the model to learn more representative features, leading to
improved performance. Visualization results further
demonstrated the model’s ability to concentrate on more relevant
patterns. Detailed findings are discussed in the following section.

Binary Recall Loss
Our training data set exhibited a slight imbalance of positive
and negative samples, which posed a challenge for accurately
predicting IHCA. Given the serious threat that IHCA presents
to patient safety, maximizing the model’s recall is of paramount
importance, as it measures the system’s ability to correctly
identify true positive cases. A high recall ensures that most
actual cardiac arrest occurrences are detected, allowing health
care professionals to respond swiftly and effectively. However,
this focus on recall can inadvertently lead to an increase in false
positives, overwhelming the health care system with unnecessary
alarms and interventions. Such a scenario can strain resources
and divert attention from genuine emergencies, potentially
leading to alarm fatigue among medical staff. Therefore, it is
equally critical to maintain a reasonable level of precision
alongside recall. Striking a balance between these 2 metrics is
essential to ensure that we effectively identify critical cases of
IHCA while also minimizing the burden on health care
providers, ultimately safeguarding patient safety and enhancing
the efficiency of emergency care.

To address this, rather than using the traditional binary
cross-entropy loss, we used BRLoss by drawing on the concept
of performance-based loss from [28]. BRLoss used recall-related
weights for each class, as shown in Equation 1:

where N is the number of samples in a batch, yi is the ground
truth label of i-th data in the batch, yi ∈ [0, 1], pi is the predicted
probability, 0 ≤ pi ≤ 1 and Recallc means recall of class c, Recallc
[0, 1], c is 0 or 1.

Unlike many other statistics-based weighted loss [29-31]
functions that may cause unnecessary false positives, sacrificing

precision to gain recall, BRLoss effectively balanced recall and
precision. We used the same analytical method as [26] to
perform a partial derivative of the loss function. Assuming the
i – th data sample in the batch has a final output zi before
applying the sigmoid function, the gradient for BRLoss can be
calculated as shown in Equation 2:

In the case where the ground truth is 1, an increase in false
negatives leads to a larger negative gradient in the term related
to Recall1in Equation 2. This drives z to increase during gradient
descent, reducing false negatives and improving Recall1.
Similarly, when the ground truth is 0, more false positives result
in a larger positive gradient in the term related to Recall0
(specificity), causing z to decrease and reduce false positives.
BRLoss thus balanced recall and precision, leading to more
reliable model performance.

Results

We performed experiments using the NTUH-ECG and
FEMH-ECG data sets. Given the increasing significance of
explainable artificial intelligence, particularly in the medical
domain, interpretability had become essential [32-34]. Therefore,
we present various qualitative results and conducted ablation
studies to clarify model behavior under different conditions.

Implementation Details
We implemented EIANet using the Python and Pytorch [35]
framework. The EIANet training was accelerated using an RTX
3090 GPU. The AdamW [36] optimizer was used to train the
model over 200 epochs, with a learning rate initialized at 2 ×

10-5.

Evaluation Metrics for IHCA Prediction
In our binary classification task aimed at predicting IHCA using
ECG images, we used a comprehensive evaluation strategy to
assess model performance. This involved using several metrics
derived from the confusion matrix, such as accuracy, precision,
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recall (sensitivity), and specificity. These metrics provided a
detailed breakdown of how well the model distinguished
between positive (IHCA) and negative (non-IHCA) cases,
helping us understand not only the overall accuracy but also
how well the model balanced false positives and false negatives.
We also calculated the area under the receiver operating
characteristic curve (AUROC), which measured the trade-off
between true positive rates and false positive rates across
different decision thresholds. A higher AUROC value indicates
that the model is more capable of distinguishing between the 2
classes, even in the presence of class imbalance. Moreover, we
incorporated the area under the precision-recall curve (AUPRC)
to evaluate performance, particularly in handling imbalanced
data sets like ours, where the positive class is underrepresented.
The AUPRC focuses on precision (positive predictive value)
and recall, offering a more sensitive measure of the model’s
performance when identifying IHCA cases without being
skewed by the larger number of negative cases. Together, these

metrics provided a robust, multifaceted assessment of our
model’s effectiveness at predicting IHCA, ensuring that it
performs well across a range of critical evaluation criteria.

Experimental Results With ECG Data Sets

External Comparison
Table 3 presents a comprehensive comparison between our
study and the work of Kwon et al [23], which used raw ECG
signals to predict IPCA. In addition to differences in patient
populations (ED vs inpatients), a key distinction between the 2
studies lies in the format of the input data: Although Kwon et
al [23] used raw ECG signals, our approach was built around
the use of ECG images. This shift from signal-based input to
image-based input enables our model to leverage advanced
image processing techniques, such as spatial attention, to
enhance feature extraction. In contrast, raw signals can be
directly analyzed using the temporal relationships between
successive values.

Table 3. Comparison of our study with Kwon et al [23], highlighting differences in input data formats (electrocardiogram images vs raw signals) and
data set balance.

AUROCaSpecificityPrecisionRecallAccuracyPositive rateMethod

0.9480.9200.0760.7780.9180.0093Kwon et al [23]

0.8960.8840.8130.8000.8430.401Ours

aAUROC: area under the receiver operating characteristic curve.

Another significant difference is the distribution of positive
samples between the 2 data sets. The work by Kwon et al [23]
involved a highly imbalanced data set with a larger proportion
of negative samples, which is reflected in their higher specificity.
In contrast, our data set was more balanced, with a more
equitable distribution of positive and negative samples, which
had a direct influence on the performance metrics. This
difference in the proportion of positive samples played a crucial
role in shaping outcomes like precision, accuracy, and AUROC,
making direct comparisons between the 2 models less
straightforward.

In summary, our approach, with spatial attention, BRLoss, and
more balanced sample distribution, can enhance the accurate
detection of positive cases, leading to a slightly higher recall.
The model by Kwon et al [23], having a predominantly negative
sample set, excels in specificity but may sacrifice sensitivity to
positive cases. The distinct methodologies and differing data
set characteristics highlight the complementary strengths of the
2 approaches, offering insights into how input formats and
sample distributions can impact the prediction performance of
cardiac arrest models.

Comparison With the Benchmark
To the best of our knowledge, the NTUH-ECG data set stands
as the only data set we can get to date that uses image-based
ECG data specifically for the prediction of EDCA. Our proposed

model, EIANet, represents a pioneering approach in this domain,
being the first to tackle this predictive task using ECG images
as input. We used the well-established vision model ResNet50
as a baseline for comparative analysis, leveraging its widespread
recognition in image-based tasks as a point of reference.

Table 4 shows a side-by-side comparison of the performance
of EIANet and ResNet50. Compared with solely using the
ResNet50 module, EIANet incorporates spatial attention,
enabling the model to focus more on spatially crucial features.
With stronger feature representations, combined with BRLoss,
the model’s ability to differentiate between positive and negative
samples is further enhanced. IEIANet significantly outperforms
ResNet50 across multiple evaluation metrics, underscoring the
efficacy of our tailored approach. We attribute this marked
improvement to 2 key innovations in our model design. First,
the incorporation of the spatial attention module substantially
enhanced the model’s feature extraction capabilities. By using
spatial attention, EIANet can dynamically focus on the most
relevant regions within the ECG images, allowing it to capture
critical visual patterns that are often indicative of impending
cardiac events. This focused attention provides the model with
a more nuanced understanding of the subtle yet vital features
present in ECG images. In addition to spatial attention, BRLoss
helps to mitigate the risk of too many false positives and false
negatives, leading to a slight improvement in recall without
affecting precision too much.
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Table 4. Comparison of our ECG-Image-Aware Network (EIANet) module with the baseline (ResNet50) module.

AUPRCbAUROCaF1-scorePrecisionRecallAccuracyMethod

0.7890.8460.7440.7250.7630.786Baseline (ResNet50)

0.8420.8960.8050.8130.8000.843Ours (EIANet)

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.

Qualitative Results
Figure 3 and Figure 4 provide feature map [37] visualizations
of positive samples from the NTUH-ECG data set. The
visualization shows the Grad-CAM output, highlighting regions
with Grad-CAM values greater than 0.4. Figure 3 shows the
output of a model incorporating spatial attention, while Figure
4 presents the results of a model devoid of spatial attention.
Alterations in the ST segment serve as pivotal indicators of
myocardial ischemia. Notwithstanding the presence of a bundle

branch block in this ECG, EIANet, as depicted in Figure 3,
could still accurately pinpoint the ST segment. This underscores
EIANet’s capacity to discern patterns associated with EDCA
within ECG images. Furthermore, tachycardia is a prevalent
ECG manifestation preceding EDCA. The regular bright spots
in the figures suggest that the algorithm is adept at counting the
heart rate. In contrast, although the model without spatial
attention, as illustrated in Figure 4, also counted the heart rate,
its focus on the ST segment was less precise and more dispersed.

Figure 3. Feature map of a National Taiwan University Hospital electrocardiogram (NTUH-ECG) sample with a spatial attention block.
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Figure 4. Feature map of a National Taiwan University Hospital electrocardiogram (NTUH-ECG) sample without a spatial attention block.

Figure 5 and Figure 6 present visualizations from the
FEMH-ECG data set, which further illustrate the impact of
spatial attention by focusing on heart rate–related features. In
Figure 5 (with spatial attention), the model effectively identifies

regular bright spots corresponding to heartbeats, indicating its
ability to count the heart rate accurately. Conversely, Figure 6
(without spatial attention) shows a less distinct attention pattern,
reducing interpretability.

Figure 5. Feature map of a Far Eastern Memorial Hospital electrocardiogram (FEMH-ECG) sample with a spatial attention block.
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Figure 6. Feature map of a Far Eastern Memorial Hospital electrocardiogram (FEMH-ECG) sample without a spatial attention block.

Ablation Study
The first ablation study focused on evaluating the impact of
different types of input data on model performance. As detailed
in Table 5, using raw ECG images directly extracted from PDF
reports for training demonstrated a certain level of predictive
capability, indicating that even unprocessed images contain
valuable information that the model can learn from. However,

the study revealed that, when these raw images undergo a series
of image preprocessing steps to remove irrelevant or distracting
elements, the model’s performance saw marked improvement
because the model could focus on crucial visual patterns and
structures essential for predicting EDCA. This performance
boost underscores the importance of preprocessing for enhancing
the quality of the input data.

Table 5. Comparison of raw images and processed images on the National Taiwan University Hospital electrocardiogram (NTUH-ECG) data set.

AUPRCbAUROCaF1-scorePrecisionRecallAccuracyInput

0.7850.8320.7270.7180.7370.782Raw image

0.8420.8960.8050.8130.8000.843Processed image

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.

By applying preprocessing techniques, such as noise reduction,
removal of grid lines, and extraction of key features, the model
was better able to focus on the most relevant aspects of the ECG
images, allowing it to learn more effectively. Preprocessing not
only reduced the amount of noise and irrelevant information
present in the images but also helped to clarify the visual
patterns and structures that are crucial for predicting EDCA.
This led to more accurate predictions and overall model
performance.

Table 6 presents an ablation study evaluating the influence of
spatial attention and BRLoss on the model’s performance and
demonstrates the impact of incorporating the spatial attention
mechanism and BRLoss on model performance. We trained our
model on the NTUH-ECG training set and validated it using
both the NTUH-ECG testing set and the FEMH-ECG data set.
As expected, due to differences in patient populations, there
was a slight decrease in model performance in the FEMH-ECG

data set. The results indicate that the spatial attention module
and BRLoss elevated the model’s performance. The spatial
attention mechanism empowered the model to extract more
effective ECG features, such as the ST segment and heart rate
patterns, thereby enhancing feature representation and overall
model accuracy. This mechanism ensured that the model
concentrated on critical segments of the ECG image, leading
to improved interpretability and reliability. Moreover, BRLoss
ameliorated the model’s recall without compromising precision
to a significant degree. BRLoss focuses on reducing false
predictions and improving F1-score and AUROC. However, its
effectiveness also depends on the model’s ability to sufficiently
represent the data. When combined with spatial attention, the
performance of the model can be further enhanced by leveraging
the strengths of both modules. Although BRLoss prioritizes
recall, decision thresholds can be adjusted in clinical applications
to achieve a suitable balance between recall and precision,
addressing specific requirements in emergency scenarios.
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Table 6. Ablation study results of modules in ECG-Image-Aware Network (EIANet).

AUPRCbAUROCaF1-scorePrecisionRecallAccuracyModules

NTUH-ECG c data set

0.7920.8410.7000.6700.7280.742None

0.8250.8740.7860.7830.7890.825SAd only

0.8160.8690.7570.7360.7810.796BRLosse only

0.8420.8960.8050.8130.8000.843SA + BRLoss

FEMH-ECG f data set

0.6210.7810.5970.5710.6260.707None

0.6970.8140.6270.6100.6450.734SA only

0.6760.7970.6070.6020.6130.726BRLoss only

0.6780.8030.6500.6160.6880.743SA + BRLoss

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cNTUH-ECG: National Taiwan University Hospital electrocardiogram.
dSA: spatial attention.
eBRLoss: binary recall loss.
fFEMH-ECG: Far Eastern Memorial Hospital electrocardiogram.

Ablation Study With Varying Class Imbalances
To evaluate the contributions of the spatial attention module
and BRLoss under varying class imbalances, we performed
random resampling of the NTUH-ECG and FEMH-ECG data
sets to adjust the proportion of positive samples to 0.1 and 0.2.
Each resampling experiment was repeated 30 times, and the

results were averaged to ensure robustness. The ablation study
results under positive sample ratios of 0.1 and 0.2 are presented
in Table 7. These results clearly demonstrate the contributions
of spatial attention and BRLoss to the model’s performance. In
addition, for metrics that are not dependent on the prevalence
of positive cases (eg, AUROC), the model performance
remained.
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Table 7. Ablation study results of modules in ECG-Image-Aware Network (EIANet).

AUPRCbAUROCaF1-scorePrecisionRecallAccuracyModules

NTUH-ECG c data set: positive ratio of 0.1

0.4360.8370.3570.2380.7140.749None

0.4910.8710.4920.3590.7830.843SAd only

0.4950.8720.4380.3040.7800.805BRLosse only

0.4930.8940.5320.4020.7880.865SA + BRLoss

FEMH-ECG f data set: positive ratio of 0.1

0.2650.7870.3190.2150.6210.737None

0.3680.8110.3510.2430.6370.767SA only

0.3350.7940.3400.2370.6050.769BRLoss only

0.3390.8030.3660.2500.6850.764SA + BRLoss

NTUH-ECG data set: positive ratio of 0.2

0.6120.8420.5330.4210.7280.747None

0.6600.8750.6640.5670.8000.840SA only

0.6460.8690.6090.4990.7800.802BRLoss only

0.6740.8950.6900.6080.7980.858SA + BRLoss

FEMH-ECG data set: positive ratio of 0.2

0.4440.7800.3190.3860.6290.726None

0.6440.8140.3510.4250.6470.754SA only

0.5150.7970.3400.4140.6080.750BRLoss only

0.5150.8030.3660.4290.6860.755SA + BRLoss

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cNTUH-ECG: National Taiwan University Hospital electrocardiogram.
dSA: spatial attention.
eBRLoss: binary recall loss.
fFEMH-ECG: Far Eastern Memorial Hospital electrocardiogram.

Discussion

Principal Findings
To our knowledge, this is the first study to develop and validate
a deep learning algorithm (EIANet) specifically for predicting
EDCA using ECG image data. The findings demonstrate that
deep learning, a powerful artificial intelligence tool, can detect
subtle ECG changes hours before cardiac arrest in the ED.
Deployment of this tool at ED triage has the potential to gain
lead time to identify high-risk patients for timely interventions
and reduce EDCAs.

Comparison With Prior Work
Traditionally, ECG prediction of cardiac arrest has mainly
focused on OHCA (ie, using ECG to predict sudden cardiac
death at the population level) [38]. For example, an electrical
risk score that comprises 6 features (heart rate, prolonged
corrected QT interval, Tpeak-Tend interval, QRS-T angle, left
ventricular hypertrophy, and delayed QRS transition zone) can
accurately predict sudden cardiac death within a

community-based cohort [39]. A refined deep learning–based
ECG model can further improve its predictive ability using the
same 6 features [40]. Notably, tachycardia has been included
as one of the features in the electrical risk score and was also
documented in our feature map analysis and in a previous IPCA
ECG study [23], suggesting the importance of this feature in
predicting OHCA, IPCA, and EDCA.

One of our previous studies on EDCA focused on the
development and validation of a simple 8-item, rule-based
prediction tool using structural data at ED triage [25]. Another
study of ours further advanced EDCA prediction by using deep
learning with static triage data and dynamic vital signs measured
during the ED stay [16]. None of these studies used ECG as an
input for deep learning, as we did in this study. Given the
promising results of using triage ECG to predict EDCA, the
next logical step would be to combine ECG and structural data
as a multimodal model for EDCA prediction.
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Strengths
The EIANet has several technical innovations. Before model
training, we used image processing techniques to eliminate
manual labels and noise from the ECG images. To enhance
model performance, we integrated an attention mechanism and
BRLoss. These components had a positive impact on EIANet’s
predictive capabilities. Our research used 2 ECG image data
sets: NTUH-ECG and FEMH-ECG. The NTUH-ECG data set,
with a positive sample ratio of 40%, yielded impressive results,
with EIANet achieving an F1-score of 0.805 and AUPRC of
0.842. The FEMH-ECG data set, characterized by a lower
positive sample ratio of 34.6%, still demonstrated strong
performance, with EIANet attaining an F1-score of 0.650 and
AUPRC of 0.678. To validate the effectiveness of the proposed
modules, we conducted ablation studies, further confirming
their importance. Additionally, Grad-CAM visualization was
used to provide interpretability for EIANet’s predictions using
ECG images.

In the past, ECG prediction models were typically designed for
diseases with relatively obvious features, such as myocardial
infarction or hyperkalemia [41,42]. However, precardiac arrest
ECGs lack absolutely distinct characteristics, making EDCA
significantly more challenging to predict. Additionally, most
existing image-based ECG models have remained in the
proof-of-concept stage, often relying on general purpose
framework models like ResNet without substantial
customization for this specific task. These approaches, although
promising, have struggled with critical limitations, such as high
false-negative rates and limited interpretability. To address these
challenges, we enhanced ResNet50 by incorporating a spatial
attention mechanism, enabling the model to focus on subtle but
clinically significant ECG patterns. Furthermore, we introduced
a BRLoss function to prioritize recall and reduce false negatives,
a critical improvement for predicting rare but life-threatening
events like EDCA. These innovations aimed to overcome the
inherent limitations of prior approaches and establish a practical,
interpretable, and effective prediction framework.

Limitations and Future Directions
Although our results demonstrate a certain level of predictive
capability on both the NTUH-ECG and FEMH-ECG data sets,

the performance on the FEMH-ECG data set declined. The
observed drop in recall when evaluating the EIANet model on
the FEMH-ECG data set can be attributed to multiple factors.
First, patient population differences between the data sets likely
played a significant role. Variations in patient populations could
influence the manifestations of ECGs, leading to differing model
performance. Second, differences in instrumentation between
the 2 data sets may have introduced some biases. These
discrepancies, combined with slight differences in image sizes
formats and preprocessing process, might have impacted the
model’s ability to generalize effectively. Addressing these
challenges in future work by incorporating more diverse data
sets could enhance the model’s robustness and applicability
across different clinical settings. In the future, we hope to use
EIANet as an encoder for ECG data, integrating it with other
modalities of patient information to establish a more
comprehensive multimodal prediction method for EDCA.

This study has some potential limitations. First, the model’s
performance was dependent on the quality and variety of the
training data. Although we included ECGs from 2 independent
medical centers, further external validation studies are needed
to evaluate the model’s robustness in different patient
populations. Second, this was a retrospective study. Even with
external validation, as in our retrospective study, models could
have poor performance in the prospective setting, such as the
Rothman Index by PeraHealth [43,44] and the Epic Sepsis
Model [45,46]. Future implementation of the EIANet model in
the ED would be warranted to test its real-world effectiveness.

Conclusions
In conclusion, we presented a comprehensive study aimed at
understanding the relationship between ECG images and EDCA.
To the best of our knowledge, this is the first in the literature
that uses readily available 12-lead ECG images at ED triage to
predict imminent ED cardiac arrest. Using 2 independent ED
data sets, we developed and externally validated the novel deep
learning EIANet model that can be used to identify high-risk
patients and potentially reduce devastating ED cardiac arrest
events. Future implementation of the EIANet in real time is
warranted to test whether this tool could flag high-risk patients
at ED triage for timely interventions, thereby improving patient
outcomes.
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