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Abstract

Background: Systematic reviews and meta-analyses rely on labor-intensive literature screening. While machine learning offers
potential automation, its accuracy remains suboptimal. This raises the question of whether emerging large language models
(LLMs) can provide a more accurate and efficient approach.

Objective: This paper evaluates the sensitivity, specificity, and summary receiver operating characteristic (SROC) curve of
LLM-assisted literature screening.

Methods: We conducted a diagnostic study comparing the accuracy of LLM-assisted screening versus manual literature screening
across 6 thoracic surgery meta-analyses. Manual screening by 2 investigators served as the reference standard. LLM-assisted
screening was performed using ChatGPT-4o (OpenAI) and Claude-3.5 (Anthropic) sonnet, with discrepancies resolved by
Gemini-1.5 pro (Google). In addition, 2 open-source, machine learning–based screening tools, ASReview (Utrecht University)
and Abstrackr (Center for Evidence Synthesis in Health, Brown University School of Public Health), were also evaluated. We
calculated sensitivity, specificity, and 95% CIs for the title and abstract, as well as full-text screening, generating pooled estimates
and SROC curves. LLM prompts were revised based on a post hoc error analysis.

Results: LLM-assisted full-text screening demonstrated high pooled sensitivity (0.87, 95% CI 0.77-0.99) and specificity (0.96,
95% CI 0.91-0.98), with the area under the curve (AUC) of 0.96 (95% CI 0.94-0.97). Title and abstract screening achieved a
pooled sensitivity of 0.73 (95% CI 0.57-0.85) and specificity of 0.99 (95% CI 0.97-0.99), with an AUC of 0.97 (95% CI 0.96-0.99).
Post hoc revisions improved sensitivity to 0.98 (95% CI 0.74-1.00) while maintaining high specificity (0.98, 95% CI 0.94-0.99).
In comparison, the pooled sensitivity and specificity of ASReview tool-assisted screening were 0.58 (95% CI 0.53-0.64) and 0.97
(95% CI 0.91-0.99), respectively, with an AUC of 0.66 (95% CI 0.62-0.70). The pooled sensitivity and specificity of Abstrackr
tool-assisted screening were 0.48 (95% CI 0.35-0.62) and 0.96 (95% CI 0.88-0.99), respectively, with an AUC of 0.78 (95% CI
0.74-0.82). A post hoc meta-analysis revealed comparable effect sizes between LLM-assisted and conventional screening.

Conclusions: LLMs hold significant potential for streamlining literature screening in systematic reviews, reducing workload
without sacrificing quality. Importantly, LLMs outperformed traditional machine learning-based tools (ASReview and Abstrackr)
in both sensitivity and AUC values, suggesting that LLMs offer a more accurate and efficient approach to literature screening.

(J Med Internet Res 2025;27:e67488) doi: 10.2196/67488
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Introduction

The development of clinical practice guidelines necessitates a
comprehensive and systematic synthesis of current research
evidence [1]. Evidence-based medicine frequently relies on
systematic reviews and meta-analyses, which aggregate findings
from studies on a specific topic [2-4]. This process traditionally
involves extensive effort in identifying and retrieving relevant
literature [5,6]. While machine learning has shown promise in
streamlining literature retrieval, its accuracy often falls short of
desired standards [7-9]. Therefore, further research is needed
to develop a more precise screening method.

Recently, large language models (LLMs) powered by natural
language processing have demonstrated remarkable capabilities
in various domains, including language comprehension, image
and video generation, and data analysis [8-13]. Previous studies
have suggested the potential of LLMs for literature screening
[9,14,15]. However, their accuracy in the screening process for
meta-analyses remains unclear.

We hypothesized that LLM-assisted literature screening could
achieve accuracy comparable with manual screening. To test
this hypothesis, we designed a diagnostic trial using
conventional manual screening as the reference standard to
evaluate the accuracy of LLM-assisted literature screening.

Methods

Study Design
This prospective diagnostic study aimed to assess the validity
of LLMs for assisting with literature screening during
meta-analysis. Conventional literature manual screening served
as the reference standard. This diagnostic study was performed
according to the Standards for Reporting of Diagnostic Accuracy
Studies (STARD) guidelines and the CONSORT-EHEALTH
(Consolidated Standards of Reporting Trials of Electronic and
Mobile Health Applications and Online Telehealth) checklist.

Before the study commenced, we defined the research topic as
the comparison between sublobar resection and lobectomy in
thoracic surgery, a topic of ongoing debate within the field. A
total of 6 relevant published meta-analyses were identified
[16-21], and the search strategy and terms were subsequently
redesigned for a new round of literature retrieval and screening.
To ensure a comprehensive yet nonredundant literature base,
the search strategies and inclusion timeframes outlined within
each meta-analysis were replicated. Duplicate studies were
subsequently identified and removed using Rayyan [22], a
web-based literature management tool.

Conventional Literature Screening
Following identification, 2 independent investigators (Lei Peng
and Xing-Yu Liu) screened the titles and abstracts of retrieved
studies for inclusion based on predefined criteria (detailed in
Table S1 in Multimedia Appendix 1). Discrepancies were
resolved through adjudication by a third investigator (Xu-Yang
Wang). Full-text papers of potentially eligible studies were
subsequently reviewed by the same 2 independent investigators
(Lei Peng and Xing-Yu Liu) against the same inclusion criteria,

and any discrepancies were again resolved through adjudication
by the third investigator (Xu-Yang Wang). This conventional
literature screening established the reference standard for
comparison. Investigators involved in the conventional screening
were excluded from participation in the LLM-assisted screening
and subsequent analyses.

LLM-Assisted Literature Screening
For the LLM-assisted literature screening, a 5-column table
(author, publication year, journal, title, and abstract) was
compiled from the deduplicated literature. Following established
prompt engineering guidelines [23], specific prompts were
developed to facilitate automated screening using Python
(version 3.9.0; Python Software Foundation). These prompts,
structured to output results in a tabular format, instructed the
LLM to perform screening based on the Population,
Intervention, Control, Outcome, and Study design (PICOS)
framework criteria defined for each topic study (detailed in
Table S1 in Multimedia Appendix 1). An example prompt is
provided in Figure S1 in Multimedia Appendix 1.

In addition, 2 LLMs, ChatGPT-4o (OpenAI) and Claude-3.5
sonnet (Anthropic), were used as independent reviewers to
independently screen titles and abstracts. Study selection was
based on the predefined inclusion and exclusion criteria.
Discrepancies in study selection between the 2 LLMs were
resolved by Gemini-1.5 pro (Google). Full-text papers
underwent an identical screening process. The literature
screening process assisted by LLM was conducted and
supervised by 2 reviewers (Z-YD and F-QW). The detailed
prompts used in LLM-assisted literature screening are provided
in section S1 in Multimedia Appendix 2.

We then evaluated the performance of 2 open-source, machine
learning–based screening tools, ASReview [24,25] and
Abstrackr [26,27], for title and abstract screening. We compared
their results against conventional manual screening methods,
which served as the reference standard, to assess the accuracy
of LLM-assisted literature screening. The detailed methodology
is documented in section S2 in Multimedia Appendix 2.

Statistical Analysis
The accuracy of both LLM-assisted literature screening and 2
semiautomated, machine learning–based screening tools were
evaluated in each topical study using sensitivity, specificity,
and their corresponding 95% CIs. The primary analysis focused
on the sensitivity and specificity of LLM-assisted literature
screening assessed after full-text review. The secondary analysis
focused on the sensitivity and specificity of LLM-assisted
screening at the title and abstract review stage. In addition,
meta-analysis techniques were used to calculate pooled
sensitivity and specificity, along with the summary receiver
operating characteristic (SROC) curve. This provided overall
results for the primary, secondary, and post hoc analyses.
Heterogeneity across topic studies was assessed by calculating
the inconsistency value (I²) using the chi-square test. A
random-effects model was used to pool sensitivity and
specificity if I² exceeded 50% or if the P value was less than
.05. Meta-analyses were conducted using Stata (version 15.0;
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StataCorp), while other statistical analyses were performed
using GraphPad Prism (version 8.0.1; GraphPad Prism, Inc).

A post hoc analysis (conducted by YW and QP) involved
reviewing papers of false-negative classifications to identify
the sources of LLM errors during screening (the comprehensive
explanations for the occurrence of false-negative classifications
are provided in Table S2 in Multimedia Appendix 1).
Subsequently, the literature screening prompts were refined by
incorporating a chain-of-thought prompting strategy [28] based
on the identified error patterns (conducted by CS). In addition,
3 iterations of screening querying were then performed with
revised prompts to optimize the model’s validity. A study was
considered eligible if the LLM classified it as eligible during
any of the 3 iterations.

To further assess the robustness of LLM-assisted screening and
account for potential variations, a separate post hoc
meta-analysis was conducted (Y-LJ and Z-YL). This analysis
compared the pooled effect sizes derived from LLM-assisted
screening (including only true positives) with those from
conventional screening (including both true positives and false
negatives) for each topic study.

Ethical Considerations
The study did not involve human participants or biological
specimens. As such, the Biomedical Ethics Committee of West
China Hospital, Sichuan University determined that this research
was eligible for exemption from ethical review (reference
number: 2024−1177). This decision aligns with institutional
and local policies that exempt studies not involving human
subjects or biological materials from requiring formal ethics
board approval.

Results

The Results of Conventional Manual and
LLM-Assisted Literature Screening
Following deduplication in the conventional literature screening
process, the initial search yielded 357, 462, 296, 429, 2,298,
and 696 papers for studies 1-6, respectively. Title and abstract
screening resulted in 98, 41, 44, 14, 126, and 138 papers selected
for full-text review in the corresponding studies. Ultimately,
28, 12, 26, 11, 10, and 26 papers from studies 1 to 6,
respectively, met the inclusion criteria and were incorporated
into the final meta-analysis (Figure 1). The results of
LLM-assisted literature screening are listed and described in
Table S3 in Multimedia Appendix 1 and section S3 in
Multimedia Appendix 2.

Figure 1. Flow diagram of meta-analysis using conventional manual literature screening and large language model (LLM)–assisted screening. AUC:
area under the curve; SROC: summary receiver operating characteristic curve.
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Primary Analysis of LLM-Assisted Literature
Screening
In the LLM-assisted literature screening process, a total of 26,
9, 24, 11, 9, and 18 papers from studies 1 to 6, respectively,
were included in the final meta-analysis (Table S3 in Multimedia
Appendix 1). The primary analysis revealed the sensitivity and
specificity of the LLM-assisted screening for studies 1-6 as
follows: 0.93 (95% CI 0.76-0.99) and 0.84 (95% CI 0.80-0.88),
0.75 (95% CI 0.43-0.95) and 0.94 (95% CI 0.91-0.96), 0.92
(95% CI 0.75-0.99) and 0.97 (95% CI 0.94-0.99), 1.00 (95%
CI 0.72-1.00) and 0.92 (95% CI 0.89-0.94), 0.90 (95% CI

0.55-1.00) and 0.99 (95% CI 0.98-0.99), and 0.69 (95% CI
0.48-0.86) and 0.99 (95% CI 0.98-1.00), respectively (Figure
2). Meta-analysis of 6 topic studies revealed that LLM-assisted
screening demonstrated a high discriminative ability, with SROC
curve analysis yielding an area under the curve (AUC) of 0.96
(95% CI 0.94-0.97); see Figure S2 in Multimedia Appendix 1.
Furthermore, the pooled sensitivity and specificity were 0.87
(95% CI 0.77-0.99) and 0.96 (95% CI 0.91-0.98), respectively
(Figure 2). The counts of true positives, false negatives, false
positives, and true negatives of primary analysis are detailed in
Table S3 in Multimedia Appendix 1.

Figure 2. Sensitivity and specificity of large language model (LLM)–assisted literature screening in the primary analysis.

Secondary Analysis of LLM-Assisted Screening
The pooled sensitivity and specificity across these 6 studies
were 0.73 (95% CI 0.57-0.85) and 0.99 (95% CI 0.97-0.99),
respectively (Figure 3 and section S4 in Multimedia Appendix

2). The SROC analysis yielded an AUC of 0.97 (95% CI
0.96-0.99); see Figure S2 in Multimedia Appendix 1. The counts
of true positives, false negatives, false positives, and true
negatives of secondary analysis are detailed in Table S3 in
Multimedia Appendix 1.

Figure 3. Sensitivity and specificity of large language model (LLM)–assisted literature screening in the secondary analysis.

The pooled sensitivity and specificity of ASReview tool-assisted
screening were 0.58 (95% CI 0.53-0.64) and 0.97 (95% CI
0.91-0.99), respectively (Figure S3 in Multimedia Appendix
1). The pooled sensitivity and specificity of Abstrackr
tool-assisted screening were 0.48 (95% CI 0.35-0.62) and 0.96
(95% CI 0.88-0.99), respectively (Figure S4 in Multimedia
Appendix 1). The SROC analysis yielded AUC values of 0.66
(95% CI 0.62-0.70) and 0.78 (95% CI 0.74-0.82), respectively
(Figure S5 in Multimedia Appendix 1). The corresponding
counts of true positives, false negatives, false positives, and true

negatives of the title and abstract screening phase are detailed
in Table S4 in Multimedia Appendix 1.

Post Hoc Analysis of Revised Prompts
A post hoc analysis was conducted using a revised prompt
(Figure S6 in Multimedia Appendix 1) and incorporating a
chain-of-thought strategy (Table S2 in Multimedia Appendix
1 and section S5 in Multimedia Appendix 2). The sensitivity
and specificity of LLM-assisted screening in the primary
analysis are described in section S6 in Multimedia Appendix
2. The overall sensitivity and specificity across these 6 studies
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in the primary analysis were 0.98 (95% CI 0.74-1.00) and 0.98
(95% CI 0.94-0.99), respectively (Figure 4). The SROC analysis
yielded an AUC of 1.00 (95% CI 0.99-1.00; Figure S7 in
Multimedia Appendix 1). The counts of true positives, false
negatives, false positives, and true negatives for the post hoc

analysis are detailed in Table S3 in Multimedia Appendix 1.
The sensitivity, specificity, and AUC of LLM-assisted screening
in the secondary analysis are presented and described in Figures
S7-S8 in Multimedia Appendix 1 and section S7 in Multimedia
Appendix 2.

Figure 4. Sensitivity and specificity of large language model (LLM)–assisted literature screening: primary analysis with revised prompt (post hoc).

Post Hoc Meta-Analysis of Index Results of
LLM-Assisted Screening
This post hoc meta-analysis compared pooled effect sizes from
studies 1, 2, 3, 5, and 6 (Table S5 in Multimedia Appendix 1
and section S8 in Multimedia Appendix 2) for LLM-assisted
screening versus conventional screening. The meta-analysis
revealed comparable results between the two methods.
Furthermore, the false-negative papers did not substantially
affect the overall conclusions of the corresponding topic studies
(Figures S9-S17 in Multimedia Appendix 1).

Discussion

Principal Findings
Our study addresses a critical challenge in the development of
clinical practice guidelines—the labor-intensive and
time-consuming nature of literature screening in meta-analyses
[2]. Traditionally, this process relies heavily on manual efforts
to ensure the inclusion of high-quality evidence from
randomized controlled trials and cohort studies [2,3,8]. While
machine learning approaches have been explored, they often
lack the precision required for reliable screening [8]. In this
context, our research highlights the potential of LLMs to
enhance the efficiency and accuracy of literature screening. Our
findings suggest that LLMs, with their advanced natural
language processing capabilities, can effectively automate
significant portions of the screening process, aligning closely
with the accuracy of manual methods. This advancement could
significantly streamline the preparation of systematic reviews
and meta-analyses, offering a promising alternative to traditional
methods and addressing the limitations observed with earlier
machine learning models.

Our primary analysis revealed that using literature included
after conventional manual full-text review as the reference
standard, the sensitivity and specificity of LLM-assisted

literature screening ranged from 0.77 to 0.99 and 0.91 to 0.98,
respectively. Furthermore, the SROC curve, constructed based
on the true positive and false positive results from 6 studies,
indicated a high level of accuracy for LLM-assisted literature
screening, with an AUC ranging from 0.94 to 0.97. Post hoc
analysis incorporating modified prompts demonstrated that
LLM-assisted literature screening achieved even higher
sensitivity (0.98, 95% CI 0.74-1.00) while maintaining a
similarly high level of specificity and AUC (0.94-0.99 and
0.99-1.00, respectively). Currently, limited research has explored
the accuracy of LLM-assisted screening in meta-analysis for
the development of high-level evidence-based medicine. Our
research establishes a foundation for the future application of
LLMs in the literature screening process of meta-analyses.

Comparison With Previous Work
Our study results demonstrate that LLM-assisted literature
screening offers superior accuracy compared with traditional
machine-learning models. Previous studies [24,27,29] have
reported relatively low sensitivity for machine learning–assisted
literature screening, ranging from 0.24 to 0.80. Our study also
found that 2 semiautomated tools used for title and abstract
screening in literature reviews had relatively low sensitivity,
ranging from 0.35 to 0.64. The advantages of LLMs are evident
in 3 key aspects. First, large language models possess advanced
capabilities in language understanding and text generation,
surpassing the capabilities of traditional screening tools [15].
This distinctive feature enables LLMs to excel at identifying
relevant literature and discerning irrelevant studies. Conversely,
machine learning models require predefined training and
validation datasets, including key literature inputs, and often
necessitate human review, thereby increasing the barrier to their
implementation [24,27]. In contrast, LLMs can rapidly and
efficiently generate screening results without the need for
training data or human review, owing to their user-friendly
conversational interface. This significantly enhances efficiency
and reduces workload. Furthermore, research suggests that
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LLM-assisted screening can achieve a tenfold reduction in
screening time compared with manual screening [1]. While
machine learning models also offer time-saving benefits, LLMs
eliminate the need for training data and key literature inputs,
potentially yielding even greater time savings. Second, previous
studies [14,29-31] using machine learning and other natural
language processing tools for literature screening reported
sensitivities ranging from 0.75 to 0.90, which is consistent with
the sensitivity observed in our study. However, our findings
indicate that the specificity of LLM-assisted screening (95%
CI 0.91-0.98) was notably higher than that reported in previous
studies (95% CI 0.69-0.90), suggesting a potential advantage
of LLMs in accurately identifying literature relevant to the
research topic. While LLMs exhibited very high specificity in
both primary, second, and post hoc analyses, it is important to
acknowledge that these high-performance estimates might be
partially attributed to an overrepresentation of true-negative
literature in the datasets used. Third, LLMs exhibit a capacity
for continuous learning and self-improvement, akin to human
learning processes. With appropriate prompts and instructions,
LLMs can refine their performance iteratively, leading to
progressively enhanced accuracy. New iterations of LLMs are
released approximately every 3-6 months, and these updates
are anticipated to further improve sensitivity and specificity
during literature screening in meta-analyses. Furthermore, LLMs
offer broad applicability and functional extensibility across
diverse topics and formats, enabling users to develop customized
chatbots tailored to specific research needs. These advantages
collectively lower the barrier to entry, reduce workload, and
maintain high levels of accuracy, potentially revolutionizing
the literature screening process in the future.

In contrast to previous studies [1,9,14] that used a single LLM
for literature screening, this study used 3 models concurrently,
thereby more accurately reflecting the conventional manual
screening process. For instance, Oami et al [1]. relied solely on
the ChatGPT-4 Turbo model (released November 7, 2023).
Recognizing the ongoing evolution of LLMs, this study
expanded the model set to include the updated ChatGPT-4o
(released May 13, 2024), Claude-3.5 Sonnet (released June 21,
2024), and Gemini-1.5 Pro (released May 14, 2024). The
combined sensitivity and specificity of LLM-assisted literature
screening achieved in this study were 0.87 (95% CI 0.77-0.99)
and 0.96 (95% CI 0.91-0.98), respectively. These results surpass
the sensitivity of 0.75 (95% CI 0.43-0.92) reported by Oami et
al [1], suggesting that updated LLMs may enhance screening
sensitivity. Specificity remained consistent with the 0.99 (95%
CI 0.99-0.99) reported by Oami et al [1], highlighting the
potential of LLMs to effectively identify irrelevant literature.
While a direct comparison may be limited due to potential
heterogeneity introduced by differing research themes, this study
provides a novel approach and establishes a foundation for the
broader application of LLMs in facilitating literature screening
for meta-analyses.

Post hoc analysis revealed that modified prompts significantly
improved the sensitivity and specificity of LLM-assisted
literature screening to 0.98 (95% CI 0.74-1.00) and 0.98 (95%
CI 0.94-0.99), respectively. This underscores the substantial
impact of prompt content on LLM performance in literature

screening and the quality of meta-analyses. Recent research on
prompt engineering has demonstrated the influence of prompts
on LLM performance and proposed strategies for tailoring LLM
responses to specific topics [17,32,33]. In this study, prompts
were designed based on the PICOS framework for each research
topic. During the post hoc analysis, false-negative results from
studies 1, 2, 3, 5, and 6 were reviewed. This analysis indicated
a positive correlation between the complexity of inclusion
criteria and the likelihood of LLMs making “exclude” decisions.
LLMs exhibited a tendency to strictly adhere to the inclusion
criteria specified in the prompts. Conversely, human reviewers
typically apply inclusion criteria more conservatively during
the initial title and abstract screening phase to minimize the risk
of overlooking potentially relevant studies. Based on this
observation, it was determined that minor discrepancies between
the inclusion criteria in the prompts and the titles or abstracts
could be tolerated. Consequently, the prompts were revised to
relax the inclusion criteria. In total, 3 iterations of inquiries were
then conducted with the modified prompts to optimize sensitivity
and reduce false-negative results. The post hoc analysis
confirmed an improvement in the sensitivity of LLM-assisted
literature screening. However, some false-negative literature
was still missed in the final comprehensive analysis, potentially
impacting the robustness of the meta-analysis conclusions.

To assess the impact of false-negative literature on the final
conclusions, a separate post hoc meta-analysis was conducted.
This analysis compared the pooled effect sizes derived from
LLM-assisted screening (including only true positives) with
those derived from conventional screening (including both true
positives and false negatives) for topic studies. The results
indicated comparable outcomes between the two methods in
most topic studies. Furthermore, the false-negative papers did
not substantially alter the overall conclusions of the
corresponding topic studies in the majority of instances. Notably,
however, for outcomes on lymph node dissection (study 3) and
overall survival (study 5), the exclusion of false negatives shifted
the results from statistically significant positive effects to
nonsignificant negative effects. An examination of the studies
included in the study 3 and 5, focusing on the outcomes of
lymph node dissection and overall survival, revealed significant
heterogeneity and publication bias in the reported findings. This
suggests that in meta-analyses demonstrating low heterogeneity
and an absence of publication bias, the inclusion or exclusion
of potential false-negative studies may not substantially impact
the overall conclusions. However, these findings underscore
the need for further research on the application of LLMs for
literature screening in meta-analyses. Future research should
focus on developing prompts that are more readily interpretable
by LLMs and exploring techniques for continuous
self-correction within LLMs to improve sensitivity.

Limitations
This study acknowledges several limitations. First, its focus is
exclusively on meta-analyses within thoracic surgery. Therefore,
the generalizability and broader applicability of LLM-assisted
literature screening to other fields require further investigation.
Future research should evaluate the performance of LLMs across
diverse meta-analysis fields to assess their validity for literature
screening across various domains of evidence-based medicine.
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Second, ongoing updates to LLMs may introduce variations in
the quality of model outputs over time, potentially influencing
the strength of evidence synthesized in meta-analyses. Third,
the use of conventional manual screening as a reference standard
may introduce inherent errors in inclusion and exclusion
decisions. Existing research [34] indicates that error rates for
human reviewers in literature screening range from 6.68% to
21.11% across different fields, with an average error rate of
10.76%. This suggests that the reference standard itself is not
infallible, and a comparable error rate for LLM-assisted
screening could be considered acceptable. Fourth, a key
limitation of our study is the use of previously published
systematic reviews, which raises the risk of bias, as the content
of these reviews may have been included in the training
materials for LLMs. To mitigate this, we redesigned the search
strategy and replicated the inclusion criteria and timeframes
outlined in these meta-analyses for a new round of literature
retrieval and screening. In addition, we evaluated the results
with new readers to ensure the integrity of our findings. Fifth,
an additional key limitation of our study lies in the method of
accessing LLMs, as we used a web-based interface instead of
an application programming interface (API). While convenient,
web-based access lacks the flexibility, performance, offline
functionality, and data security provided by API-based
deployment. This reliance on external servers outside the

researchers’ control may have introduced some bias in the
literature screening process. Future studies should explore
API-based access, which enables local or server deployment,
offering greater control, enhanced security, and better integration
with research workflows. APIs also allow secure handling of
sensitive data and more efficient operation in offline or
resource-constrained settings. Although the web-based interface
was sufficient for this study, adopting API-based access in future
research could address these limitations and improve reliability
and security.

Despite these limitations, the integration of LLMs into the
meta-analysis workflow represents a significant advancement
with the potential to enhance productivity and accelerate the
speed and quality of resource and knowledge synthesis.

Conclusions
LLM-assisted screening, particularly at the full-text screening
level and with revised prompts, can achieve accuracy
comparable with manual screening. This suggests LLMs hold
significant potential for streamlining literature screening in
systematic reviews, reducing workload without sacrificing
quality. Integrating LLMs into evidence synthesis workflows
could accelerate the production of high-quality reviews,
facilitating more timely translation of research into practice and
policy.
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